Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 15, 2025
-
Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low‐quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio‐frequency performance perspective. This analysis highlights the linear front‐end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Ferranti, Francesco; Hedayati, Mehdi K; Fratalocchi, Andrea (Ed.)Free, publicly-accessible full text available June 18, 2025
-
Blanchard, Jeffrey Lawrence (Ed.)ABSTRACT Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species—Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome forC. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events inC. steinii, which may account for its genome being about twice the size ofC. inflata’s, another co-existing species. We further resolve the gene expression profiles in diverse life stages ofC. steinii, which are also corroborated inC. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpodaspecies, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature ofColpoda’s life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes.more » « lessFree, publicly-accessible full text available June 18, 2025
-
Abstract Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.more » « less
-
Abstract mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative.more » « less
-
Abstract The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.more » « less
-
We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the under-sampled signals are the same as the statistical properties of the original signals. The linear power range measurement shows that the sampling system with ultra-narrow optical pulse achieves a 30dB power dynamic range.more » « less