Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 30, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Abstract We study some dyadic models for incompressible magnetohydrodynamics and Navier–Stokes equation. The existence of fixed point and stability of the fixed point are established. The scaling law of Kolmogorov’s dissipation wavenumber arises from heuristic analysis. In addition, a time-dependent determining wavenumber is shown to exist; moreover, the time average of the determining wavenumber is proved to be bounded above by Kolmogorov’s dissipation wavenumber. Additionally, based on the knowledge of the fixed point and stability of the fixed point, numerical simulations are performed to illustrate the energy spectrum in the inertial range below Kolmogorov’s dissipation wavenumber.
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available October 31, 2024
-
Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.more » « less