skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study indiscriminate poisoning for linear learners where an adversary injects a few crafted examples into the training data with the goal of forcing the induced model to incur higher test error. Inspired by the observation that linear learners on some datasets are able to resist the best known attacks even without any defenses, we further investigate whether datasets can be inherently robust to indiscriminate poisoning attacks for linear learners. For theoretical Gaussian distributions, we rigorously characterize the behavior of an optimal poisoning attack, defined as the poisoning strategy that attains the maximum risk of the induced model at a given poisoning budget. Our results prove that linear learners can indeed be robust to indiscriminate poisoning if the class-wise data distributions are well-separated with low variance and the size of the constraint set containing all permissible poisoning points is also small. These findings largely explain the drastic variation in empirical attack performance of the state-of-the-art poisoning attacks on linear learners across benchmark datasets, making an important initial step towards understanding the underlying reasons some learning tasks are vulnerable to data poisoning attacks. 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  2. Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA...

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Ye, Qingsong (Ed.)
    Biodegradable and adaptable polymeric materials are currently being studied due to their wide scope of potential applications, from nanomedicine to novel multifunctional materials. One such class of polymers are poly(disulfide)s, which contain repeating disulfide bonds in their main chain. Lipoic acid, or thioctic acid, is a biologically derived small molecule containing a 1,2-dithiolane ring capable of undergoing ring opening polymerization to yield poly(disulfide)s. In this review, we highlight the synthesis of lipoic acid-based poly(disulfide)s through thermal and thiolate-initiated ring opening polymerizations, and the development of methodology pertaining to the synthetic methods. We further discuss the biomedical applications of poly(disulfide)s, which have been widely used to construct various responsive biomaterials, including polymer-drug conjugates, nanoparticles, hydrogels, and adhesives. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Abstract EPW is an open-source software for ab initio calculations of electron–phonon interactions and related materials properties. The code combines density functional perturbation theory and maximally localized Wannier functions to efficiently compute electron–phonon coupling matrix elements, and to perform predictive calculations of temperature-dependent properties and phonon-assisted quantum processes in bulk solids and low-dimensional materials. Here, we report on significant developments in the code since 2016, namely: a transport module for the calculation of charge carrier mobility under electric and magnetic fields using the Boltzmann transport equation; a superconductivity module for calculations of phonon-mediated superconductors using the anisotropic multi-band Eliashberg theory; an optics module for calculations of phonon-assisted indirect transitions; a module for the calculation of small and large polarons without supercells; and a module for calculating band structure renormalization and temperature-dependent optical spectra using the special displacement method. For each capability, we outline the methodology and implementation and provide example calculations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Abstract

    The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.

    more » « less
  6. Abstract

    Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis–Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.

    more » « less
  7. Abstract

    Shock waves are sites of intense plasma heating and charged particle acceleration. In collisionless solar wind plasmas, such acceleration is attributed to shock drift or Fermi acceleration but also to wave–particle resonant interactions. We examine the latter for the case of electrons interacting with one of the most commonly observed wave modes in shock environments, the whistler mode. Such waves are particularly intense in dynamic, localized regions upstream of shocks, arising from the kinetic interaction of the shock with solar wind discontinuities. These regions, known as foreshock transients, are also sites of significant electron acceleration by mechanisms not fully understood. Using in situ observations of such transients in the Earth’s foreshock, we demonstrate that intense whistler-mode waves can resonate nonlinearly with >25 eV solar wind electrons and accelerate them to ∼100–500 eV. This acceleration is mostly effective for the 50–250 eV energy range, where the accelerated electron population exhibits a characteristic butterfly pitch-angle distribution consistent with theoretical predictions. Such nonlinear resonant acceleration is very fast, implying that this mechanism may be important for injecting suprathermal electrons of solar wind origin into the shock region, where they can undergo further, efficient shock-drift acceleration to even higher energies.

    more » « less
  8. Free, publicly-accessible full text available April 28, 2024