skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Abstract

    Massive protostars launch accretion-powered, magnetically collimated outflows, which play crucial roles in the dynamics and diagnostics of the star formation process. Here we calculate the shock heating and resulting free–free radio emission in numerical models of outflows of massive star formation within the framework of the Turbulent Core Accretion model. We postprocess 3D magnetohydrodynamic simulation snapshots of a protostellar disk wind interacting with an infalling core envelope, and calculate shock temperatures, ionization fractions, and radio free–free emission. We find heating up to ∼107K and near-complete ionization in shocks at the interface between the outflow cavity and infalling envelope. However, line-of-sight averaged ionization fractions peak around ∼10%, in agreement with values reported from observations of massive protostar G35.20-0.74N. By calculating radio-continuum fluxes and spectra, we compare our models with observed samples of massive protostars. We find our fiducial models produce radio luminosities similar to those seen from low- and intermediate-mass protostars that are thought to be powered by shock ionization. Comparing to more massive protostars, we find our model radio luminosities are ∼10–100 times less luminous. We discuss how this apparent discrepancy either reflects aspects of our modeling related to the treatment of cooling of the post-shock gas or a dominant contribution in the observed systems from photoionization. Finally, our models exhibit 10 yr radio flux variability of ∼5%, especially in the inner 1000 au region, comparable to observed levels in some hypercompact Hiiregions.

     
    more » « less
  3. Abstract

    To test theoretical models of massive star formation it is important to compare their predictions with observed systems. To this end, we conduct CO molecular line radiative transfer post-processing of 3D magnetohydrodynamic simulations of various stages in the evolutionary sequence of a massive protostellar core, including its infall envelope and disk wind outflow. Synthetic position–position–velocity cubes of various transitions of12CO,13CO, and C18O emission are generated. We also carry out simulated Atacama Large Millimeter/submillimeter Array (ALMA) observations of this emission. We compare the mass, momentum, and kinetic energy estimates obtained from molecular lines to the true values, finding that the mass and momentum estimates can have uncertainties of up to a factor of 4. However, the kinetic energy estimated from molecular lines is more significantly underestimated. Additionally, we compare the mass outflow rate and momentum outflow rate obtained from the synthetic spectra with the true values. Finally, we compare the synthetic spectra with real examples of ALMA-observed protostars and determine the best-fitting protostellar masses and outflow inclination angles. We then calculate the mass outflow rate and momentum outflow rate for these sources, finding that both rates agree with theoretical protostellar evolutionary tracks.

     
    more » « less
  4. Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Abstract We report high-resolution ALMA observations toward a massive protostellar core C1-Sa (∼30 M ⊙ ) in the Dragon infrared dark cloud. At the resolution of 140 au, the core fragments into two kernels (C1-Sa1 and C1-Sa2) with a projected separation of ∼1400 au along the elongation of C1-Sa, consistent with a Jeans length scale of ∼1100 au. Radiative transfer modeling using RADEX indicates that the protostellar kernel C1-Sa1 has a temperature of ∼75 K and a mass of 0.55 M ⊙ . C1-Sa1 also likely drives two bipolar outflows, one being parallel to the plane of the sky. C1-Sa2 is not detected in line emission and does not show any outflow activity but exhibits ortho-H 2 D + and N 2 D + emission in its vicinity; thus it is likely still starless. Assuming a 20 K temperature, C1-Sa2 has a mass of 1.6 M ⊙ . At a higher resolution of 96 au, C1-Sa1 begins to show an irregular shape at the periphery, but no clear sign of multiple objects or disks. We suspect that C1-Sa1 hosts a tight binary with inclined disks and outflows. Currently, one member of the binary is actively accreting while the accretion in the other is significantly reduced. C1-Sa2 shows hints of fragmentation into two subkernels with similar masses, which requires further confirmation with higher sensitivity. 
    more » « less
  6. Abstract

    Star formation is ubiquitously associated with the ejection of accretion-powered outflows that carve bipolar cavities through the infalling envelope. This feedback is expected to be important for regulating the efficiency of star formation from a natal prestellar core. These low-extinction outflow cavities greatly affect the appearance of a protostar by allowing the escape of shorter-wavelength photons. Doppler-shifted CO line emission from outflows is also often the most prominent manifestation of deeply embedded early-stage star formation. Here, we present 3D magnetohydrodynamic simulations of a disk wind outflow from a protostar forming from an initially 60Mcore embedded in a high-pressure environment typical of massive star-forming regions. We simulate the growth of the protostar fromm*= 1Mto 26Mover a period of ∼100,000 yr. The outflow quickly excavates a cavity with a half opening angle of ∼10° through the core. This angle remains relatively constant until the star reaches 4M. It then grows steadily in time, reaching a value of ∼50° by the end of the simulation. We estimate a lower limit to the star formation efficiency (SFE) of 0.43. However, accounting for continued accretion from a massive disk and residual infall envelope, we estimate that the final SFE may be as high as ∼0.7. We examine observable properties of the outflow, especially the evolution of the cavity's opening angle, total mass, and momentum flux, and the velocity distributions of the outflowing gas, and compare with the massive protostars G35.20-0.74N and G339.88-1.26 observed by the Atacama Large Millimeter/submillimeter Array (ALMA), yielding constraints on their intrinsic properties.

     
    more » « less