skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Yijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern-day reservoir management and monitoring of geologic carbon storage increasingly call for costly time-lapse seismic data collection. We demonstrate how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic data. Based on midpoint-offset-domain connectivity arguments, our algorithm automatically produces sparse nonreplicated time-lapse acquisition geometries that favor wavefield recovery. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    We present a theoretical model describing photoelectron transport dynamics in stepwise-doped GaAs photocathodes. Built-in electric field caused by the doping structure is analyzed, and the time-evolution of electron concentration in the active layer induced by a femtosecond laser pulse is solved. The predictions of the model show excellent agreement with the experimental data measured with pump-probe transient reflectometry, demonstrating the capability of the theoretical model in predicting photoelectron behaviors in real devices. Comparisons are also made between this stepwise doping model and the conventional gradient doping model with a continuous doping profile, thereby providing the first quantitative evaluation of the effectiveness and the limitation of the gradient doping model in describing actual stepwise-doped devices.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The application of empirical mode decomposition (EMD) in the analysis and processing of lightning electric field waveforms acquired by the low-frequency e-field detection array (LFEDA) in China has significantly improved the capabilities of the low-frequency/very-low-frequency (LF/VLF) time-of-arrival technique for studying the lightning discharge processes. However, the inherent mode mixing and the endpoint effect of EMD lead to certain problems, such as an inadequate noise reduction capability, the incorrect matching of multistation waveforms, and the inaccurate extraction of pulse information, which limit the further development of the LFEDA's positioning ability. To solve these problems, the advanced ensemble EMD (EEMD) technique is introduced into the analysis of LF/VLF lightning measurements, and a double-sided bidirectional mirror (DBM) extension method is proposed to overcome the endpoint effect of EMD. EEMD can effectively suppress mode mixing, and the DBM extension method proposed in this article can effectively suppress the endpoint effect, thus greatly improving the accuracy of a simulated signal after a 25-500-kHz bandpass filter. The resulting DBM_EEMD algorithm can be used in the LFEDA system to process and analyze the detected electric field signals to improve the system's lightning location capabilities, especially in terms of accurate extraction and location of weak signals from lightning discharges. In this article, a 3-D image of artificially triggered lightning obtained from an LF/VLF location system is reported for the first time, and methods for further improving the location capabilities of the LF/VLF lightning detection systems are discussed. 
    more » « less
  6. Abstract

    Identification and validation of atmospheric extremes are essential to monitoring climate change, to addressing engineering and safety concerns, and to promoting technological advancement. An international World Meteorological Organization evaluation committee has critically adjudicated and recommended acceptance of two lightning megaflash events (horizontal mesoscale lightning discharges of >100 km in length) as new global extremes using analysis of Geostationary Lightning Mapper data. The world's greatest extent for an individual lightning flash is a single flash that covered a horizontal distance of 709 ± 8 km (441 ± 5 mi) across parts of southern Brazil on 31 October 2018. The greatest duration for a single lightning flash is 16.730 ± 0.002 s from a flash that developed continuously over northern Argentina on 4 March 2019.

    more » « less
  7. Abstract

    A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.

    more » « less