skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Yucheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A s a c om pl e men t t o da ta d edupli cat ion , de lta c om p ress i on fu r- t he r r edu c es t h e dat a vo l u m e by c o m pr e ssi n g n o n - dup li c a t e d ata chunk s r e l a t iv e to t h e i r s i m il a r chunk s (bas e chunk s). H ow ever, ex is t i n g p o s t - d e dup li c a t i o n d e l t a c o m pr e ssi o n a p- p ro a ches fo r bac kup s t or ag e e i t h e r su ffe r f ro m t h e l ow s i m - il a r i t y b e twee n m any de te c ted c hun ks o r m i ss so me po t e n - t i a l s i m il a r c hunks , o r su ffer f r om l ow (ba ckup and r es t ore ) th r oug hpu t du e t o extr a I/ Os f or r e a d i n g b a se c hun ks o r a dd a dd i t i on a l s e r v i c e - d i s r up t ive op e r a t i on s to b a ck up s ys t em s. I n t h i s pa p e r, w e pr opo se L oop D e l t a t o a dd ress the above - m e n t i on e d prob l e m s by an e nha nced em b e ddi n g d e l t a c o m p - r e ss i on sc heme i n d e dup li c a t i on i n a non - i n t ru s ive way. T h e e nha nce d d elt a c o mpr ess ion s che m e co m b in e s f our key t e c h - ni qu e s : (1) du a l - l o c a li t y - b a s e d s i m il a r i t y t r a c k i n g to d e t ect po t e n t i a l si m il a r chun k s b y e x p l o i t i n g both l o g i c a l and ph y - s i c a l l o c a li t y, ( 2 ) l o c a li t y - a wa r e pr e f e t c h i n g to pr efe tc h ba se c hun ks to a vo i d ex t ra I/ Os fo r r e a d i n g ba s e chun ks on t h e w r i t e p at h , (3) c a che -aware fil t e r to avo i d ext r a I/Os f or b a se c hunk s on t he read p at h, a nd (4) i nver sed de l ta co mpressi on t o perf orm de lt a co mpress i o n fo r d at a chunk s t hat a re o th e r wi se f o r b i dd e n to s er ve as ba se c hunk s by r ew r i t i n g t e c hn i qu e s d e s i g n e d t o i m p r ove r es t o re pe rf o rma nc e. E x p e r i m e n t a l re su lts indi ca te t hat L oop D e l t a i ncr ea se s t he c o m pr e ss i o n r a t i o by 1 .2410 .97 t i m e s on t op of d e dup li c a - t i on , wi t hou t no t a b l y a ffe c t i n g th e ba ck up th rou ghpu t, a nd i t i m p r ove s t he res to re p er fo r m an ce b y 1.23.57 t i m e 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm−2for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm−2, power density of 4960 µW cm−2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.

    more » « less
  3. Abstract

    Metal‐halide perovskites have become appealing materials for optoelectronic devices. While the fast advancing stretchable/wearable devices require stability, flexibility and scalability, current perovskites suffer from ambient‐environmental instability and incompatible mechanical properties. Recently perovskite−polymer composites have shown improved in‐air stability with the protection of polymers. However, their stability remains unsatisfactory in water or high‐humidity environment. These methods also suffer from limited processability with low yield (2D film or beads) and high fabrication cost (high temperature, air/moisture‐free conditions), thereby limiting their device integration and broader applications. Herein, by combining facile photo‐polymerization with room‐temperature in‐situ perovskite reprecipitation at low energy cost, a one‐step scalable method is developed to produce freestanding highly‐stable luminescent organogels, within which CH3NH3PbBr3nanoparticles are homogeneously distributed. The perovskite‐organogels present a record‐high stability at different pH and temperatures, maintaining their high quantum yields for > 110 days immersing in water. This paradigm is universally applicable to broad choices of polymers, hence casting these emerging luminescent materials to a wide range of mechanical properties tunable from rigid to elastic. With intrinsically ultra‐stretchable photoluminescent organogels, flexible phosphorous layers were demonstrated with > 950% elongation. Rigid perovskite gels, on the other hand, permitted the deployment of 3D‐printing technology to fabricate arbitrary 2D/3D luminescent architectures.

    more » « less