Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2024
-
We developed a potentiometric sensor system that includes a portable device and a multiplexed sensor based on solid-contact ion-selective electrodes (SCISE). SCISEs are fabricated using printed circuit board (PCB) and mesoporous carbon black (MCB) as the ion-to-electron transducer. The device supports sensor readout as well as automated sensor calibration, making it suitable for long term, in situ measurements.Free, publicly-accessible full text available October 1, 2023
-
Free, publicly-accessible full text available July 1, 2023
-
Free, publicly-accessible full text available October 1, 2023
-
Finkbeiner, B. ; Wies, T. (Ed.)Stochastic model checking (SMC) is a formal verification technique for the analysis of systems with probabilistic behavior. Scalability has been a major limiting factor for SMC tools to analyze real-world systems with large or infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC) model checker, STAMINA, tackles this problem by selectively exploring only a portion of a model’s state space, where a majority of the probability mass resides, to efficiently give an accurate probability bound to properties under verification. In this paper, we present two major improvements to STAMINA, namely, a method of calculating and distributing estimated state reachability probabilities that improves state space truncation efficiency and combination of the previous two CTMC analyses into one for generating the probability bound. Demonstration of the improvements on several benchmark examples, including hazard analysis of infinite-state combinational genetic circuits, yield significant savings in both run-time and state space size (and hence memory), compared to both the previous version of STAMINA and the infinite-state CTMC model checker INFAMY. The improved STAMINA demonstrates significant scalability to allow for the verification of complex real-world infinite-state systems.Free, publicly-accessible full text available June 14, 2023
-
The purpose of this study was to develop a replicable methodology for testing the capabilities and characteristics of a wind turbine blade in a structural re-use application with the specific goal of creating and demonstrating an efficient and commercially viable wind blade pedestrian bridge design. Wind energy experienced a dramatic increase in popularity following the turn of the century and it is now a common source of renewable energy around the world. However, while wind turbines are able to produce clean energy while in service, turbine blades are designed for a fatigue life of only about 20 years. With the difficulty and costs associated with recycling the composite material blades used on the turbines, wind power companies choose to dispose of decommissioned blades in landfills instead. The Re-Wind BladeBridge project aims to promote a more sustainable life cycle for wind power by demonstrating that decommissioned wind turbine blades have the capability to be repurposed as structural elements in bridges. This paper presents an analysis and characterization of a LM 13.4 wind blade from a Nordex N29 turbine, along with a design for a pedestrian bridge using two LM 13.4 wind blades to create a 5-meter span bridge. Software developed bymore »Free, publicly-accessible full text available July 6, 2023