skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zonghan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to the significance of its various applications, source localization has garnered considerable attention as one of the most important means to confront diffusion hazards. Multi-source localization from a single-snapshot observation is especially relevant due to its prevalence. However, the inherent complexities of this problem, such as limited information, interactions among sources, and dependence on diffusion models, pose challenges to resolution. Current methods typically utilize heuristics and greedy selection, and they are usually bonded with one diffusion model. Consequently, their effectiveness is constrained.To address these limitations, we propose a simulation-based method termed BOSouL. Bayesian optimization (BO) is adopted to approximate the results for its sample efficiency. A surrogate function models uncertainty from the limited information. It takes sets of nodes as the input instead of individual nodes. BOSouL can incorporate any diffusion model in the data acquisition process through simulations. Empirical studies demonstrate that its performance is robust across graph structures and diffusion models. The code is available at https://github.com/XGraph-Team/BOSouL. 
    more » « less
  2. Influence blocking maximization (IBM) is crucial in many critical real-world problems such as rumors prevention and epidemic containment. The existing work suffers from: (1) concentrating on uniform costs at the individual level, (2) mostly utilizing greedy approaches to approximate optimization, (3) lacking a proper graph representation for influence estimates. To address these issues, this research introduces a neural network model dubbed Neural Influence Blocking (\algo) for improved approximation and enhanced influence blocking effectiveness. The code is available at https://github.com/oates9895/NIB. 
    more » « less