skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zuohua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop an analytical framework to appropriately model and adequately analyze A/B tests in presence of nonparametric nonstationarities in the targeted business metrics. A/B tests, also known as online randomized controlled experiments, have been used at scale by data-driven enterprises to guide decisions and test innovative ideas to improve core business metrics. Meanwhile, nonstationarities, such as the time-of-day effect and the day-of-week effect, can often arise nonparametrically in key business metrics involving purchases, revenue, conversions, customer experiences, and so on. First, we develop a generic nonparametric stochastic model to capture nonstationarities in A/B test experiments, where each sample represents a visit or action associated with a time label. We build a practically relevant limiting regime to facilitate analyzing large-sample estimator performances under nonparametric nonstationarities. Second, we show that ignoring or inadequately addressing nonstationarities can cause standard A/B test estimators to have suboptimal variance and nonvanishing bias, therefore leading to loss of statistical efficiency and accuracy. We provide a new estimator that views time as a continuous strata and performs poststratification with a data-dependent number of stratification levels. Without making parametric assumptions, we prove a central limit theorem for the proposed estimator and show that the estimator attains the best achievable asymptotic variance and is asymptotically unbiased. Third, we propose a time-grouped randomization that is designed to balance treatment and control assignments at granular time scales. We show that when the time-grouped randomization is integrated to standard experimental designs to generate experiment data, simple A/B test estimators can achieve asymptotically optimal variance. A brief account of numerical experiments are conducted to illustrate the analysis. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.01205 . 
    more » « less
    Free, publicly-accessible full text available June 1, 2026