skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Jiefeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The global well-posedness on the 2D resistive MHD equations without kinematic dissipation remains an outstanding open problem. This is a critical problem. Any $L^p$-norm of the vorticity $$\omega $$ with $$1\le p<\infty $$ has been shown to be bounded globally (in time), but whether the $$L^\infty $$-norm of $$\omega $$ is globally bounded remains elusive. The global boundedness of $$\|\omega \|_{L^\infty }$$ yields the resolution of the aforementioned open problem. This paper examines the $$L^\infty $$-norm of $$\omega $$ from a different perspective. We construct a sequence of initial data near a special steady state to show that the $$L^\infty $$-norm of $$\omega $$ is actually mildly ill-posed. 
    more » « less