It has been widely accepted that phonological awareness (PA), rapid automatized naming (RAN), and verbal short-term memory (VSTM) deficits are three core facets of phonological deficits in developmental dyslexia (DD) of alphabetic orthographies. Yet, whether these three phonological facets also represent key phonological deficits of DD in Chinese, a logographic language, has never been investigated. The current study aimed to examine profiles of phonological deficits and comorbidity in Chinese DD. We tested 128 children with DD aged between 8 and 11 years and 135 age-matched controls on 9 tasks, including 2 PA tasks (phoneme deletion and onset/rime deletion), 3 RAN tasks (digit, object and color), 2 VSTM task (spoonerisms and digit span), an orthographic awareness task (orthographic judgment), and a morphological awareness task (morphological production). With the control of morphological and orthographic awareness, results from latent profile analysis revealed three latent profiles, namely the RAN deficit group, the severe PA deficit group, and the mild VSTM deficit group. Individual analysis using a Venn plot showed that 83.59% of DD exhibited phonological deficits, among whom 58.59% with RAN deficit, 49.22% with PA deficit, and 47.66% with VSTM deficit, and all three groups shared overlap. The results have important implications for the identification and remediation of Chinese DD.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor‐acceptor type of conjugated macrocycle (
CDI‐CPP ) featuring intramolecular charge‐transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X‐ray crystallography. Transient spectroscopy studies showed thatCDI‐CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra‐ and intermolecular charge‐transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions. -
Abstract The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor‐acceptor type of conjugated macrocycle (
CDI‐CPP ) featuring intramolecular charge‐transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X‐ray crystallography. Transient spectroscopy studies showed thatCDI‐CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra‐ and intermolecular charge‐transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions. -
A number of previous studies have identified cognitive deficits in developmental dyscalculia (DD). Yet, most of these studies were in alphabetic languages, whereas few of them examined Chinese DD. Here, we conducted a study aiming to determine the cognitive factors associated with DD in Chinese children. Five candidate cognitive factors of DD—phonological retrieval, phonological awareness, visual–spatial attention, spatial thinking, and pattern understanding—were examined in the present study. A total of 904 Chinese children ages 8 to 11 years participated in this study. From the sample, 97 children were identified with DD through tests of arithmetic ability, and 93 age- and IQ-matched typically developing children were selected as controls. Logistic regression analysis revealed that phonological retrieval, pattern understanding, visual–spatial attention, and phonological awareness significantly predicted DD, whereas spatial thinking failed to do so. Results of logistic relative weights analysis showed that all five factors explained statistically significant amounts of variance in arithmetic scores. Phonological retrieval had the most influence on DD, followed by pattern understanding, visual–spatial attention, phonological awareness, and spatial thinking. These findings have important clinical implications for diagnosis and intervention of Chinese DD.
-
Abstract Optical coherence tomography (OCT) suffers from speckle noise due to the high spatial coherence of the utilized light source, leading to significant reductions in image quality and diagnostic capabilities. In the past, angular compounding techniques have been applied to suppress speckle noise. However, existing image registration methods usually guarantee pure angular compounding only within a relatively small field of view in the focal region, but produce spatial averaging in the other regions, resulting in resolution loss and image blur. This work develops an image registration model to correctly localize the real-space location of every pixel in an OCT image, for all depths. The registered images captured at different angles are fused into a speckle-reduced composite image. Digital focusing, based on the convolution of the complex OCT images and the conjugate of the point spread function (PSF), is studied to further enhance lateral resolution and contrast. As demonstrated by experiments, angular compounding with our improved image registration techniques and digital focusing, can effectively suppress speckle noise, enhance resolution and contrast, and reveal fine structures in
ex-vivo imaged tissue.