- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Zhao, Qingya (4)
-
Guo, Yi (3)
-
Rao, Ashwini K. (3)
-
Zanotto, Damiano (3)
-
Chen, Zhuo (2)
-
Landis, Corey D. (2)
-
Lytle, Ashley (2)
-
Deepak, Rohan (1)
-
Gebre, Biruk A (1)
-
Li, Shuai (1)
-
Nolan, Karen J (1)
-
Pochiraju, Kishore (1)
-
Zanottot, Damiano (1)
-
Zhang, Huanghe (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Huanghe; Li, Shuai; Zhao, Qingya; Rao, Ashwini K.; Guo, Yi; Zanotto, Damiano (, IEEE Robotics and Automation Letters)
-
Zhao, Qingya; Chen, Zhuo; Landis, Corey D.; Lytle, Ashley; Rao, Ashwini K.; Guo, Yi; Zanottot, Damiano (, IEEE International Conference on Biomedical Robotics & Biomechatronics)
-
Zhao, Qingya; Chen, Zhuo; Landis, Corey D.; Lytle, Ashley; Rao, Ashwini K.; Zanotto, Damiano; Guo, Yi (, Wearable Technologies)Abstract An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exercises for older individuals result in enhanced balance and reduced risk of falling. In this article, we present a study on gait monitoring for older adults during walking using an integrated system encompassing an assistive robot and wearable sensors. The system fuses data from the robot onboard Red Green Blue plus Depth (RGB-D) sensor with inertial and pressure sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of stability in real-time. Data collected with 24 participants at a community center reveal associations between gait parameters, physical performance (evaluated with the Short Physical Performance Battery), and cognitive ability (measured with the Montreal Cognitive Assessment). The results validate the feasibility of using such a portable system in out-of-the-lab conditions and will be helpful for designing future technology-enhanced exercise interventions to improve balance, mobility, and strength and potentially reduce falls in older adults.more » « less
An official website of the United States government
