skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhao, Qun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report [Au(NHC)Cl] complexes featuring IPr# ligands that hinge upon modular peralkylation of aniline. Wingtip-flexible [Au(Np#)Cl] is a broadly applicable catalyst with the reactivity outperforming [Au(IPr)Cl] and [Au(IPr*)Cl] complexes. 
    more » « less
  2. In this Special Issue, “Featured Papers in Organometallic Chemistry”, we report on the synthesis and characterization of [IPr#–PEPPSI], a new, well-defined, highly hindered Pd(II)–NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#–PEPPSI] in cross-coupling reactions in a range of bond activations with C–N, C–O, C–Cl, C–Br, C–S and C–H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#–PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)–NHC precatalysts in chemistry research. 
    more » « less
  3. The activation of C–O bonds in aryl methyl ethers is a fundamental method for the cross-coupling of carbon–oxygen bonds; however, this process is highly challenging due to the high dissociation energy compared with other phenol derivatives. Herein, we report a mild Ru(0)-catalyzed cleavage of C(aryl)–O bonds enabled by a combination of a Ru 3 (CO) 12 catalyst and an imine auxiliary. This method offers rapid entry to synthetically valuable biaryl aldehydes from abundant anisoles. Broad functional group tolerance is observed using this strategy, including unprecedented tolerance towards aryl bromides. The synthetic utility of this strategy has been demonstrated in sequential processes to construct complex biaryls, exploiting the orthogonal selectivity of C–O bond activation. DFT studies were conducted to provide insight into the selectivity of C–O bond cleavage. This method establishes the mildest approach to C–OMe cross-coupling reported to date. 
    more » « less
  4. Engineered nonheme iron enzymes perform enantioselective radical azidation on aryl N -fluoroamide substrates. 
    more » « less
  5. IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au( i ), Rh( i ) and Pd( ii ) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. 
    more » « less