skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhao, Ruike"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures.

     
    more » « less
    Free, publicly-accessible full text available July 30, 2025
  3. Abstract

    Magneto-mechanical metamaterials possess unique and tunable properties by adjusting their shape configurations in response to an external magnetic field. Their designs and functionalities are diverse and are utilized in a wide variety of applications, such as highly tunable elastic and electromagnetic wave filters and targeted shape morphing. In this perspective, we examine the general background of magneto-mechanical metamaterials and their diverse applications. The possible future directions in the field are also thoroughly discussed.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. Free, publicly-accessible full text available February 1, 2025
  5. Free, publicly-accessible full text available March 17, 2025
  6. Free, publicly-accessible full text available November 1, 2024
  7. Free, publicly-accessible full text available November 1, 2024
  8. Abstract

    Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.

     
    more » « less
  9. Abstract Origami has emerged as a powerful mechanism for designing functional foldable and deployable structures. Among various origami patterns, a large class of origami exhibits rotational symmetry, which possesses the advantages of elegant geometric shapes, axisymmetric contraction/expansion, and omnidirectional deployability, etc. Due to these merits, origami with rotational symmetry has found widespread applications in various engineering fields such as foldable emergency shelters, deformable wheels, deployable medical stents, and deployable solar panels. To guide the rational design of origami-based deployable structures and functional devices, numerous works in recent years have been devoted to understanding the geometric designs and mechanical behaviors of rotationally symmetric origami. In this review, we classify origami structures with rotational symmetry into three categories according to the dimensional transitions between their deployed and folded states as three-dimensional to three-dimensional, three-dimensional to two-dimensional, and two-dimensional to two-dimensional. Based on these three categories, we systematically review the geometric designs of their origami patterns and the mechanical behaviors during their folding motions. We summarize the existing theories and numerical methods for analyzing and designing these origami structures. Also, potential directions and future challenges of rotationally symmetric origami mechanics and applications are discussed. This review can provide guidelines for origami with rotational symmetry to achieve more functional applications across a wide range of length scales. 
    more » « less