skip to main content

Search for: All records

Creators/Authors contains: "Zhao, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We study $$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) models with com- plex fermions at non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose a new $$ \mathcal{N} $$ N = 2 SYK model with multiple U (1) symmetries, integer charges, and a non-vanishing supersymmetric index, realizing features not present in known SYK models. In both models, a conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the appearance of nearly AdS 2 /BPS physics. However, in contrast to complex SYK, the fermion scaling dimension depends on the background charge in the conformal limit. For a critical charge, we find a high to low entropy phase transition in which the conformal solution ceases to be valid. This transition has a simple interpretation– the fermion scaling dimension violates the unitarity bound. We offer some comments on a holographic interpretation for supersymmetric black holes. 
    more » « less
  2. Abstract Recent progress in the field of micron-scale spatial resolution direct conversion X-ray detectors for high-energy synchrotron light sources serve applications ranging from nondestructive and noninvasive microscopy techniques which provide insight into the structure and morphology of crystals, to medical diagnostic measurement devices. Amorphous selenium ( a -Se) as a wide-bandgap thermally evaporated photoconductor exhibits ultra-low thermal generation rates for dark carriers and has been extensively used in X-ray medical imaging. Being an amorphous material, it can further be deposited over large areas at room temperatures and at substantially lower costs as compared to crystalline semiconductors. To address the demands for a high-energy and high spatial resolution X-ray detector for synchrotron light source applications, we have thermally evaporated a -Se on a Mixed-Mode Pixel Array Detector (MM-PAD) Application Specific Integrated Circuit (ASIC). The ASIC format consists of 128 × 128 square pixels each 150 μm on a side. A 200 μm a -Se layer was directly deposited on the ASIC followed by a metal top electrode. The completed detector assembly was tested with 45 kV Ag and 23 kV Cu X-ray tube sources. The detector fabrication, performances, Modulation Transfer Function (MTF) measurements, and simulations are reported. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  3. Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm−1) required for future applications and results in a switching energy of <2 J cm−3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec–Kay–Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices. 
    more » « less
  4. Free, publicly-accessible full text available May 1, 2024
  5. null (Ed.)