skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Xinyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a method of detecting bifurcations by locating zeros of a signed version of the smallest singular value of the Jacobian. This enables the use of quadratically convergent root-bracketing techniques or Chebyshev interpolation to locate bifurcation points. Only positive singular values have to be computed, though the method relies on the existence of an analytic or smooth singular value decomposition (SVD). The sign of the determinant of the Jacobian, computed as part of the bidiagonal reduction in the SVD algorithm, eliminates slope discontinuities at the zeros of the smallest singular value. We use the method to search for spatially quasi-periodic traveling water waves that bifurcate from large-amplitude periodic waves. The water wave equations are formulated in a conformal mapping framework to facilitate the computation of the quasi-periodic Dirichlet-Neumann operator. We find examples of pure gravity waves with zero surface tension and overhanging gravity-capillary waves. In both cases, the waves have two spatial quasi-periods whose ratio is irrational. We follow the secondary branches via numerical continuation beyond the realm of linearization about solutions on the primary branch to obtain traveling water waves that extend over the real line with no two crests or troughs of exactly the same shape. The pure gravity wave problem is of relevance to ocean waves, where capillary effects can be neglected. Such waves can only exist through secondary bifurcation as they do not persist to zero amplitude. The gravity-capillary wave problem demonstrates the effectiveness of using the signed smallest singular value as a test function for multi-parameter bifurcation problems. This test function becomes mesh independent once the mesh is fine enough. 
    more » « less
  2. We present a numerical study of spatially quasi-periodic gravity-capillary waves of finite depth in both the initial value problem and travelling wave settings. We adopt a quasi-periodic conformal mapping formulation of the Euler equations, where one-dimensional quasi-periodic functions are represented by periodic functions on a higher-dimensional torus. We compute the time evolution of free surface waves in the presence of a background flow and a quasi-periodic bottom boundary and observe the formation of quasi-periodic patterns on the free surface. Two types of quasi-periodic travelling waves are computed: small-amplitude waves bifurcating from the zero-amplitude solution and larger-amplitude waves bifurcating from finite-amplitude periodic travelling waves. We derive weakly nonlinear approximations of the first type and investigate the associated small-divisor problem. We find that waves of the second type exhibit striking nonlinear behaviour, e.g. the peaks and troughs are shifted non-periodically from the corresponding periodic waves due to the activation of quasi-periodic modes.

     
    more » « less
  3. Sequential event prediction is a well-studied area and has been widely used in proactive management, recommender systems and healthcare. One major assumption of the existing sequential event prediction methods is that similar event sequence patterns in the historical record will repeat themselves, enabling us to predict future events. However, in reality, the assumption becomes less convincing when we are trying to predict rare or unique sequences. Furthermore, the representation of the event may be complex with hierarchical structures. In this paper, we aim to solve this issue by taking advantage of the multi-level or hierarchical representation of these rare events. We proposed to build a sequential Encoder-Decoder framework to predict the event sequences. More specifically, in the encoding layer, we built a hierarchical embedding representation for the events. In the decoding layer, we first predict the high-level events and the low-level events are generated according to a hierarchical graphical structure. We propose to link the encoding decoding layers with the temporal models for future event prediction. In this article, we further discussed applying the proposed model into the failure event prediction according to the aviation accident reports and have shown improved accuracy and model interpretability. 
    more » « less
  4. We present a numerical study of spatially quasi-periodic travelling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wavenumbers satisfying the dispersion relation is irrational. We propose a conformal mapping formulation of the water wave equations that employs a quasi-periodic variant of the Hilbert transform to compute the normal velocity of the fluid from its velocity potential on the free surface. We develop a Fourier pseudo-spectral discretization of the travelling water wave equations in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on the torus. This leads to an overdetermined nonlinear least-squares problem that we solve using a variant of the Levenberg–Marquardt method. We investigate various properties of quasi-periodic travelling waves, including Fourier resonances, time evolution in conformal space on the torus, asymmetric wave crests, capillary wave patterns that change from one gravity wave trough to the next without repeating and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves. 
    more » « less
  5. null (Ed.)
    Abstract Despite the advantages and emerging applications, broader adoption of powder bed fusion (PBF) additive manufacturing is challenged by insufficient reliability and in-process variations. Finite element modeling and control-oriented modeling have been shown to be effective for predicting and engineering part qualities in PBF. This paper first builds a finite element model (FEM) of the thermal fields to look into the convoluted thermal interactions during the PBF process. Using the FEM data, we identify a novel surrogate system model from the laser power to the melt pool width. Linking a linear model with a memoryless nonlinear submodel, we develop a physics-based Hammerstein model that captures the complex spatiotemporal thermomechanical dynamics. We verify the accuracy of the Hammerstein model using the FEM and prove that the linearized model is only a representation of the Hammerstein model around the equilibrium point. Along the way, we conduct the stability and robustness analyses and formalize the Hammerstein model to facilitate the subsequent control designs. 
    more » « less
  6. Abstract

    We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of solutions of the initial value problem. We propose a Fourier pseudo-spectral discretization of the equations of motion in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on a torus. We adopt a conformal mapping formulation and employ a quasi-periodic version of the Hilbert transform to determine the normal velocity of the free surface. Two methods of time-stepping the initial value problem are proposed, an explicit Runge–Kutta (ERK) method and an exponential time-differencing (ETD) scheme. The ETD approach makes use of the small-scale decomposition to eliminate stiffness due to surface tension. We perform a convergence study to compare the accuracy and efficiency of the methods on a traveling wave test problem. We also present an example of a periodic wave profile containing vertical tangent lines that is set in motion with a quasi-periodic velocity potential. As time evolves, each wave peak evolves differently, and only some of them overturn. Beyond water waves, we argue that spatial quasi-periodicity is a natural setting to study the dynamics of linear and nonlinear waves, offering a third option to the usual modeling assumption that solutions either evolve on a periodic domain or decay at infinity.

     
    more » « less