skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Yufei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic topological materials have recently emerged as a promising platform for studying quantum geometry by the nonlinear transport in thin film devices. In this work, an antiferromagnetic (AFM) semiconductor EuSc₂Te₄ as the first bulk crystal that exhibits quantum geometry‐driven nonlinear transport is reported. This material crystallizes into an orthorhombic lattice with AFM order below 5.2 K and a bandgap of less than 50 meV. The calculated band structure aligns with the angle‐resolved photoemission spectroscopy spectrum. The AFM order preserves combined space‐time inversion symmetry but breaks both spatial inversion and time‐reversal symmetry, leading to the nonlinear Hall effect (NLHE). Nonlinear Hall voltage measured in bulk crystals appears at zero field, peaks near the spin‐flop transition as the field increases, and then diminishes as the spin moments align into a ferromagnetic order. This field dependence, along with the scaling analysis of the nonlinear Hall conductivity, suggests that the NLHE of EuSc₂Te₄ involves contributions from quantum metric, in addition to extrinsic contributions, such as spin scattering and junction effects. Furthermore, this NLHE is found to have the functionality of broadband frequency mixing, indicating its potential applications in electronics. This work reveals a new avenue for studying magnetism‐induced nonlinear transport in magnetic materials. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  2. Abstract A finite groupGis calledC-quasirandom (by Gowers) if all non-trivial irreducible complex representations ofGhave dimension at leastC. For any unit$$\ell ^{2}$$ 2 function on a finite group we associate thequantum probability measureon the group given by the absolute value squared of the function. We show that if a group is highly quasirandom, in the above sense, then any Cayley graph of this group has an orthonormal eigenbasis of the adjacency operator such that the quantum probability measures of the eigenfunctions put close to the correct proportion of their mass on suitably selected subsets of the group that are not too small. 
    more » « less