skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Yuqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    On-chip optical filters are fundamental components in optical signal processing. While rare-earth ion-doped crystals offer ultra-narrow optical filtering via spectral hole burning, their applications have primarily been limited to those using bulk crystals, restricting their utility. In this work, we demonstrate cavity-enhanced spectral filtering based on rare-earth ions in an integrated nonlinear optical platform. We incorporate rare-earth ions into high quality-factor ring resonators patterned in thin-film lithium niobate. By spectral hole burning at 4 K in a critically coupled resonance mode, we achieve bandpass filters ranging from 7 MHz linewidth, with 13.0 dB of extinction, to 24 MHz linewidth, with 20.4 dB of extinction. By reducing the temperature to 100 mK to eliminate phonon broadening, we achieve an even narrower linewidth of 681 kHz, which is comparable to the narrowest filter linewidth demonstrated in an integrated photonic device, while only requiring a small device footprint. Moreover, the cavity enables reconfigurable filtering by varying the cavity coupling rate. For instance, as opposed to the bandpass filter, we demonstrate a bandstop filter utilizing an under-coupled ring resonator. Such versatile integrated spectral filters with high extinction ratio and narrow linewidth could serve as fundamental components for optical signal processing and optical memories on-a-chip.

     
    more » « less
  2. Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of “interior tailorability,” thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm−2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this “bottom-up” synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.

     
    more » « less
    Free, publicly-accessible full text available July 16, 2025
  3. Abstract

    Nanoparticle reinforcement is a general approach toward the strengthening of elastomer nanocomposite in large‐scale applications. Extensive studies and efforts have been contributed to demonstrating the property reinforcement of polymer nanocomposites in relation to matrix‐filler and filler‐filler interaction. Here, a facile synthetic method is creatively reported to synthesize SiO2,15/120g‐polyisoprene (SiO2g‐PI) particle brushes using atom transfer radical polymerization (ATRP). The dispersion and microstructures of the nanoparticles in the nanocomposites are investigated by morphological characterizations, whereas the reinforcing mechanism is studied through mechanical measurements as well as computational simulation. Remarkably, compared with the cured bulk elastomers and matrix(M)/SiO2blends, M/particle brushes (PB) exhibit significant improvement in mechanical properties, including tensile strength, elongation at break, modules, and rolling resistance. This elastomer nanocomposites afford a novel prospect for the practical application of next‐generation automobile tires with enhanced performance.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  4. The heterogeneous integration of silicon with III-V materials provides a way to overcome silicon’s limited optical properties toward a broad range of photonic applications. Hybrid modes are a promising way to integrate such heterogeneous Si/III-V devices, but it remains unclear how to utilize these modes to achieve photonic crystal cavities. Herein, using 3D finite-difference time-domain simulations, we propose a hybrid Si-GaAs photonic crystal cavity design that operates at telecom wavelengths and can be fabricated without requiring careful alignment. The hybrid cavity consists of a patterned silicon waveguide that is coupled to a wider GaAs slab featuring InAs quantum dots. We show that by changing the width of the silicon cavity waveguide, we can engineer the hybrid modes and control the degree of coupling to the active material in the GaAs slab. This provides the ability to tune the cavity quality factor while balancing the device’s optical gain and nonlinearity. With this design, we demonstrate cavity mode confinement in the GaAs slab without directly patterning it, enabling strong interaction with the embedded quantum dots for applications such as low-power-threshold lasing and optical bistability (156 nW and 18.1µW, respectively). This heterogeneous integration of an active III-V material with silicon via a hybrid cavity design suggests a promising approach for achieving on-chip light generation and low-power nonlinear platforms.

     
    more » « less
  5. Key Points Provenance changes at the outlet of the Hetao Basin indicate the desiccation and re‐integration of the upper Yellow River over the last ∼40 ka Paleo‐lake shorelines and geochemical proxies confirm that the west Hetao Basin contained the terminal lake for the desiccated Yellow River Climate‐river feedbacks across glacial‐interglacial cycles have implications for constraining terrestrial‐marine source‐to‐sink processes 
    more » « less