skip to main content

Search for: All records

Creators/Authors contains: "Zhao, Zhiyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Federated learning is an emerging machine learning framework where models are trained using heterogeneous datasets collected by a large number of edge clients. Standard methods to aggregate local training models weigh each model by a fraction of data size at that client. However, such approaches result in unfairness to clients with small and unique datasets, leading to inferior accuracy of the global model at these clients. In this work, we propose a novel optimization framework called DRFL that dynamically adjusts the weight assigned to each client, and we combine it with a biased client selection strategy, both of which encourage fairness in federated training. We validate the effectiveness of our proposed method on a suite of both synthetic and real federated datasets, revealing the proposed method outperforms existing baselines in terms of resulting fairness. 
    more » « less
  3. null (Ed.)
  4. Interacting electrons confined in one dimension are generally described by the Luttinger liquid formalism, where the low-energy electronic dispersion is assumed to be linear and the resulting plasmonic excitations are non-interacting. Instead, a Luttinger liquid in one-dimensional materials with nonlinear electronic bands is expected to show strong plasmon–plasmon interactions, but an experimental demonstration of this behaviour has been lacking. Here, we combine infrared nano-imaging and electronic transport to investigate the behaviour of plasmonic excitations in semiconducting single-walled carbon nanotubes with carrier density controlled by electrostatic gating. We show that both the propagation velocity and the dynamic damping of plasmons can be tuned continuously, which is well captured by the nonlinear Luttinger liquid theory. These results contrast with the gate-independent plasmons observed in metallic nanotubes, as expected for a linear Luttinger liquid. Our findings provide an experimental demonstration of one-dimensional electron dynamics beyond the conventional linear Luttinger liquid paradigm and are important for understanding excited-state properties in one dimension. 
    more » « less
  5. null (Ed.)