skip to main content

Search for: All records

Creators/Authors contains: "Zhemchugov, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used tomore »identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.« less
    Free, publicly-accessible full text available April 1, 2023
  2. A bstract A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 35 . 9 fb − 1 , collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H → aa → μμττ , and considers pseudoscalar masses in the range 3 . 6 < m a < 21 GeV. Because of themore »large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the μμ and the ττ pairs have high Lorentz boost and are collimated. The ττ reconstruction efficiency is increased by modifying the standard technique for hadronic τ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of m a , on the branching fraction (ℬ) for H → aa → μμττ , down to 1 . 5 (2 . 0) × 10 − 4 for m H = 125 (300) GeV. Model-dependent limits on ℬ(H → aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV.« less