skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng, Jiusi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Speaker Verification (SV) systems trained on adults speech often underperform on children’s SV due to the acoustic mismatch, and limited children speech data makes fine-tuning not very effective. In this paper, we propose an innovative framework, a Gated Linear Unit adapter with Iterative Fine-Tuning (G-IFT), to enhance knowledge transfer efficiency between the high-resource adults speech domain and the low-resource chil- dren’s speech domain. In this framework, a Gated Linear Unit adapter is first inserted between the pre-trained speaker embedding model and the classifier. Then the classifier, adapter, and pre-trained speaker embedding model are optimized sequentially in an iterative way. This framework is agnostic to the type of the underlying architecture of the SV system. Our experiments on ECAPA-TDNN, ResNet, and X-vector architectures using the OGI and MyST datasets demonstrate that the G-IFT framework yields consistent reductions in Equal Error Rates compared to baseline methods. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  2. In speaker verification (SV), the acoustic mismatch between children’s and adults’ speech leads to suboptimal performance when adult-trained SV systems are applied to chil- dren’s speaker verification (C-SV). While domain adaptation techniques can enhance performance on C-SV tasks, they often do so at the expense of significant degradation in performance on adults’ SV (A-SV) tasks. In this study, we propose an Age Agnostic Speaker Verification (AASV) system that achieves robust performance across both C-SV and A-SV tasks. Our approach employs a domain classifier to disentangle age-related attributes from speech and subsequently expands the embedding space using the extracted domain information, forming a unified speaker representation that is robust and highly discriminative across age groups. Experiments on the OGI and Vox- Celeb datasets demonstrate the effectiveness of our approach in bridging SV performance disparities, laying the foundation for inclusive and age-adaptive SV systems. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  3. Free, publicly-accessible full text available April 6, 2026