Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available August 15, 2025
-
Abstract Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing. This study compares engineered CBEs derived from TadA-8e in rice and tomato cells, identifying TadCBEa, TadCBEd, and TadCBEd_V106W as efficient CBEs with high purity and a narrow editing window. A dual base editor, TadDE, promotes simultaneous C-to-T and A-to-G editing. Multiplexed base editing with TadCBEa and TadDE is demonstrated in transgenic rice, with no off-target effects detected by whole genome and transcriptome sequencing, indicating high specificity. Finally, two crop engineering applications using TadDE are shown: introducing herbicide resistance alleles in
OsALS and creating synonymous mutations inOsSPL14 to resistOsMIR156 -mediated degradation. Together, this study presents TadA-8e derived CBEs and a dual base editor as valuable additions to the plant editing toolbox.Free, publicly-accessible full text available June 14, 2025 -
Free, publicly-accessible full text available June 1, 2025
-
Summary CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore
Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.Free, publicly-accessible full text available May 7, 2025 -
Abstract Among CRISPR-Cas genome editing systems,
Streptococcus pyogenes Cas9 (SpCas9), sourced from a human pathogen, is the most widely used. Here, through in silico data mining, we have established an efficient plant genome engineering system using CRISPR-Cas9 from probioticLactobacillus rhamnosus . We have confirmed the predicted 5’-NGAAA-3’ PAM via a bacterial PAM depletion assay and showcased its exceptional editing efficiency in rice, wheat, tomato, and Larix cells, surpassing LbCas12a, SpCas9-NG, and SpRY when targeting the identical sequences. In stable rice lines, LrCas9 facilitates multiplexed gene knockout through coding sequence editing and achieves gene knockdown via targeted promoter deletion, demonstrating high specificity. We have also developed LrCas9-derived cytosine and adenine base editors, expanding base editing capabilities. Finally, by harnessing LrCas9’s A/T-rich PAM targeting preference, we have created efficient CRISPR interference and activation systems in plants. Together, our work establishes CRISPR-LrCas9 as an efficient and user-friendly genome engineering tool for diverse applications in crops and beyond.