skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zhernenkov, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2025
  2. We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the “smectic Z A ,” is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole–dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic–SmZ A –ferroelectric nematic phase sequence. 
    more » « less
  3. We report the observation of the smectic A F , a liquid crystal phase of the ferroelectric nematic realm. The smectic A F is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 10 5 V / m is observed. The SmA F phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)–smectic Z A (SmZ A )–ferroelectric nematic (N F )–SmA F phase sequence, and 7N/DIO, exhibiting an N–SmZ A –SmA F phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers. 
    more » « less
  4. Understanding and manipulating crystallization processes has been an important challenge for solution-processed organic thin films, both for fundamental studies and for fabricating thin films with near-intrinsic charge transport properties. We report an in situ X-ray scattering study of the crystallization of 2-decyl-7-phenyl-[1]benzothieno[3,2- b ][1]benzothiophene (Ph-BTBT-C 10 ) during its deposition from solution. At temperatures modestly below the smectic-E/crystalline phase boundary, the crystallization goes through a transient liquid crystal state before reaching the final stable crystalline phase. Significant dynamics occur in the first few seconds of the transition, which are observed through fluctuations in the X-ray scattering intensity, and are correlated with the time interval that the transient thin film coexists with the evaporating solvent. The transition to the stable crystalline phase takes minutes or even hours under these conditions, which may be a result of the asymmetry of the molecule. Transient phases are of potential interest for applications, since they can act as a route to self-assembly of organic thin films. However, our observations show that the long-lived monolayer-stacked intermediate state does not act as a template for the bilayer-stacked crystalline phase. Rather, the grain structure is replaced through nucleation, where the nucleation free-energy barrier is related to a potential barrier that prevents molecules to flip their long axis by 180°. 
    more » « less