Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Measurements of the -dependent flow vector fluctuations in Pb–Pb collisions at using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the -dependent flow vector fluctuations at with two-particle correlations. Significant -dependent fluctuations of the flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to being present in the 5% most central collisions. In parallel, no evidence of significant -dependent fluctuations of or is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than significance in central collisions. These observations in collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high , which might be biased by -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERNmore » « lessFree, publicly-accessible full text available June 1, 2025
-
pairs may be produced in photonuclear collisions, either from the decays of photoproduced mesons or directly as nonresonant pairs. Measurements of photoproduction probe the couplings between the and charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of pairs on lead ions in ultraperipheral collisions using the ALICE detector, including the first investigation of direct production. There is significant production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range above the resonance, for rapidity and , the measured coherent photoproduction cross section is . The center-of-mass energy per nucleon of the photon-nucleus (Pb) system ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for photoproduction alone. The mass spectrum is fit to a cocktail consisting of decays, direct photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct photoproduction are presented. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « lessFree, publicly-accessible full text available May 1, 2025
-
Free, publicly-accessible full text available April 1, 2025