skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Utilizing an original data set of public Telegram channels affiliated with a right-wing extremist group, the Proud Boys, we conduct an exploratory analysis of the structure and nature of the group’s presence on the platform. Our study considers the group’s growth, organizational structure, connectedness with other far-right and/or fringe factions, and the range of topics discussed on this alternative social media platform. The findings show that the Proud Boys have a notable presence on Telegram, with a discernable spike in activity coinciding with Facebook’s and Instagram’s 2018 deplatforming of associated pages and profiles with this and other extremist groups. Another sharp increase in activity is then precipitated by the attack on the U.S. Capitol Building on January 6, 2021. By February 2022, we identified 92 public Telegram channels explicitly affiliated with the Proud Boys, which constitute the core of a well-connected network with 131,953 subscribers. These channels, primarily from the United States, also include international presences in Australia, New Zealand, Canada, the UK, and Germany. Our data reveals substantialinteraction between the Proud Boys and other fringe and/or far-right communities on Telegram, including MAGA Trumpists, QAnon, COVID-19-related misinformation, and white-supremacist communities. Content analyses of this network highlights several prominent and recurring themes, including opposition to feminism and liberals, skepticism toward official information sources, and propagation of various conspiracy beliefs. This study offers the first systematic examination of the Proud Boys on Telegram, illuminating how a far-right extremist group leverages the latitude afforded by a relatively unregulated alternative social media platform. 
    more » « less
  2. The solubility values of eight common alloying elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are experimentally measured from diffusion profiles obtained from diffusion multiples and liquid-solid diffusion couples (LSDCs) using electron probe microanalysis. These solubility values are used to establish solidus and solvus lines and compared with the experimental results reported in the literature as well as the computed phase boundaries using two CALPHAD (CALculation of PHAse Diagrams) databases. Our experimental values for Mg-Ca (530, 580, 600, 630 °C), Mg-Ce (605, 630 °C), Mg-Gd (570, 600, 630 °C) and Mg-Nd (615, 630 °C) are the first ever measurements of the hcp solidus for these four binary systems. Additional solubility data obtained from our experiments are reported for Mg-Al (375, 420, 450, 500, 550, 600 °C), Mg-Sn (375, 420, 500, 550, 600 °C), Mg-Y (590, 610, 630 °C), and Mg-Zn (275, 450, 500, 550 °C). Our experimental data are valuable input to future thermodynamic reassessments of the eight binary systems. This study also clearly shows the effectiveness of measuring solidus data using the elegant LSDCs. 
    more » « less
  3. This study examines the relationship between online communication by the Proud Boys and their offline activities. We use a supervised machine learning model to analyze a novel dataset of Proud Boys Telegram messages, merged with US Crisis Monitor data of violent and nonviolent events in which group members participated over a 31-month period. Our analysis finds that intensifying expressions of grievances online predict participation in offline violence, whereas motivational appeals to group pride, morale, or solidarity share a reciprocal relationship with participation in offline events. This suggests a potential online messaging–offline action cycle, in which (a) nonviolent offline protests predict an increasing proportion of motivational messaging and (b) increases in the frequency and proportion of motivational appeals online, in turn, predict subsequent violent offline activities. Our findings offer useful theoretical insights for understanding the relationship between online speech and offline behavior. 
    more » « less
  4. Cellulose-based conductive composite fibers hold great promise in smart wearable applications, given cellulose's desirable properties for textiles. Blending conductive fillers with cellulose is the most common means of fiber production. Incorporating a high content of conductive fillers is demanded to achieve desirable conductivity. However, a high filler load deteriorates the processability and mechanical properties of the fibers. Here, developing wet-spun cellulose-based fibers with a unique side-by-side (SBS) structure via sustainable processing is reported. Sustainable sources (cotton linter and post-consumer cotton waste) and a biocompatible intrinsically conductive polymer (i.e., polyaniline, PANI) were engineered into fibers containing two co-continuous phases arranged side-by-side. One phase was neat cellulose serving as the substrate and providing good mechanical properties; another phase was a PANI-rich cellulose blend (50 wt%) affording electrical conductivity. Additionally, an eco-friendly LiOH/urea solvent system was adopted for the fiber spinning process. With the proper control of processing parameters, the SBS fibers demonstrated high conductivity and improved mechanical properties compared to single-phase cellulose and PANI blended fibers. The SBS fibers demonstrated great potential for wearable e-textile applications. 
    more » « less
  5. The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental geneDYRK1A. Results in vitro reliably predicted the effects of genetic background onDyrk1aloss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience toDyrk1a1Aloss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies. 
    more » « less
  6. Fe2O3 is an appealing anode material due to its high specific capacity (1007 mAh g− 1), low cost, natural abundance, and nontoxicity. However, its unstable structure during cycling processes has hindered its potential. In this study, we present a “green” synthesis method to fabricate stable porous Fe2O3 encapsulated in a buffering hollow structure (p-Fe2O3@h-TiO2) as an effective anode material for Li-ion batteries. The synthesis process only involves glucose as an “etching” agent, without the need for organic solvents or difficult-to-control environments. Characterizations of the nanostructures, chemical compositions, crystallizations, and thermal behaviors for the intermediate/final products confirm the formation of p-Fe2O3@h-TiO2. The synthesized Fe2O3 anode material effectively accommodates volume change, decreases pulverization, and alleviates agglomeration, leading to a high capacity that is over eleven times greater than that of the as-received commercial Fe2O3 after a long cycling process. This work provides an attractive, “green” and efficient method to convert commercially abundant resources like Fe2O3 into effective electrode materials for energy storage systems. 
    more » « less
  7. Electrochemical energy storage devices (EESDs) are critical technologies in modern economy, covering numerous fields such as portable electronics, electric vehicles, etc. The expanding market of EESDs demands for extra requirements such as safety, environmental friendliness and low cost, in addition to increasingly enhanced electrochemical properties. Natural proteins are abundant, versatile bio-macromolecules involving tremendous amount of amino acids/functional groups/heteroatoms, which greatly benefit sustainable technologies for advancing performances of EESDs. Recent years, significant research on utilizing natural proteins including plant/animal proteins to fabricate active materials for enhancing performance of EESDs has been well reported. Therefore, it is important to comprehensively summarize the progress and achievements, analyze the advantages/challenges, and predict the prospective for future protein-based strategies toward high performance EESDs, which are the contents of this review. The protein-derived active materials include activated carbons, silicon, sulfur, metal alloys, transitional metal compounds, and nonprecious metal catalysts. The resulting EESDs are associated with Li-/Na-/K-ion batteries, metal–air batteries, and redox flow batteries, as well as supercapacitors. The contributions of proteins to stabilizing/protecting electrodes, and thus enhancing performance of EESDs are specifically emphasized. Furthermore, studies on genetical engineering of proteins for directing self-assembly of active material nanoparticles are introduced. 
    more » « less