skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Bolei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. Exoskeletons have enormous potential to improve human locomotive performance. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals. 
    more » « less
  6. Driving safety is a top priority for autonomous vehicles. Orthogonal to prior work handling accident-prone traffic events by algorithm designs at the policy level, we investigate a Closed-loop Adversarial Training (CAT) framework for safe end-to-end driving in this paper through the lens of environment augmentation. CAT aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios that are dynamically generated over time. A novel resampling technique is developed to turn log-replay real-world driving scenarios into safety-critical ones via probabilistic factorization, where the adversarial traffic generation is modeled as the multiplication of standard motion prediction sub-problems. Consequently, CAT can launch more efficient physical attacks compared to existing safety-critical scenario generation methods and yields a significantly less computational cost in the iterative learning pipeline. We incorporate CAT into the MetaDrive simulator and validate our approach on hundreds of driving scenarios imported from real-world driving datasets. Experimental results demonstrate that CAT can effectively generate adversarial scenarios countering the agent being trained. After training, the agent can achieve superior driving safety in both log-replay and safety-critical traffic scenarios on the held- out test set. Code and data are available at https://metadriverse.github.io/cat. 
    more » « less
  7. Learning from active human involvement enables the human subject to actively intervene and demonstrate to the AI agent during training. The interaction and corrective feedback from human brings safety and AI alignment to the learning process. In this work, we propose a new reward-free active human involvement method called Proxy Value Propagation for policy optimization. Our key insight is that a proxy value function can be designed to express human intents, wherein state- action pairs in the human demonstration are labeled with high values, while those agents’ actions that are intervened receive low values. Through the TD-learning framework, labeled values of demonstrated state-action pairs are further propagated to other unlabeled data generated from agents’ exploration. The proxy value function thus induces a policy that faithfully emulates human behaviors. Human- in-the-loop experiments show the generality and efficiency of our method. With minimal modification to existing reinforcement learning algorithms, our method can learn to solve continuous and discrete control tasks with various human control devices, including the challenging task of driving in Grand Theft Auto V. Demo video and code are available at: https://metadriverse.github.io/pvp. 
    more » « less
  8. Large-scale driving datasets such as Waymo Open Dataset and nuScenes substantially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations that accurately reflect the real- world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand- crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird- Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of ScenarioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at https://metadriverse.github.io/scenarionet. 
    more » « less