Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Creating analytic representations of multiple potential energy surfaces for modeling electronically nonadiabatic processes is a major challenge being addressed in various ways by the chemical dynamics community. In this work, we introduce a new method that can achieve convenient learning of multiple potential energy surfaces (PESs) and their gradients (negatives of the forces) for a polyatomic system. This new method, called compatibilization by deep neural network (CDNN), is demonstrated to be accurate and, even more importantly, to be automatic. The only required input is a database with geometries and potential energies. The method produces a matrix, called the compatible potential energy matrix (CPEM), that may be interpreted as the electronic Hamiltonian in an implicit nonadiabatic basis, and the analytic adiabatic potential energy surfaces and their gradients are obtained by diagonalization and automatic differentiation. We show that the CPEM, which is neither adiabatic nor necessarily diabatic, can be discovered automatically during the learning procedure by the special design of a CDNN architecture. We believe that the CDNN method will be very useful in practice for learning coupled PESs for polyatomic systems because it is accurate and fully automatic.more » « lessFree, publicly-accessible full text available April 8, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Deep learning (DL) models have demonstrated state-of-the-art performance in the classification of diagnostic imaging in oncology. However, DL models for medical images can be compromised by adversarial images, where pixel values of input images are manipulated to deceive the DL model. To address this limitation, our study investigates the detectability of adversarial images in oncology using multiple detection schemes. Experiments were conducted on thoracic computed tomography (CT) scans, mammography, and brain magnetic resonance imaging (MRI). For each dataset we trained a convolutional neural network to classify the presence or absence of malignancy. We trained five DL and machine learning (ML)-based detection models and tested their performance in detecting adversarial images. Adversarial images generated using projected gradient descent (PGD) with a perturbation size of 0.004 were detected by the ResNet detection model with an accuracy of 100% for CT, 100% for mammogram, and 90.0% for MRI. Overall, adversarial images were detected with high accuracy in settings where adversarial perturbation was above set thresholds. Adversarial detection should be considered alongside adversarial training as a defense technique to protect DL models for cancer imaging classification from the threat of adversarial images.more » « less