skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Jianshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Terahertz (THz) magnetoresistance effects have been extensively investigated and have shown promising results for applications in magnetic modulations of the amplitude of THz waves. However, THz magnetocapacitance in dielectric systems, which is essential for phase modulations of THz radiation, remains largely unexplored. Here, we study the THz response of a bulk single crystal of La0.875Sr0.125MnO3at around its Curie temperature, observing significant magnetic-field-induced changes in the THz resistance and capacitance extracted from the optical conductivity. We discuss possible mechanisms for the observed coexistence of colossal THz magnetoresistance and magnetocapacitance in a perovskite manganite that is not multiferroic. This work enhances our understanding of colossal magnetoresistance in a complex system with THz spectroscopy and demonstrates potential use of perovskite manganites in THz technology.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
    We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive highenergy peaks result from the Cu2þ dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF3, which predominantly drives orbital ordering. 
    more » « less