Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cryptocurrency introduces usability challenges by requiring users to manage signing keys. Popular signing key management services (e.g., custodial wallets), however, either introduce a trusted party or burden users with managing signing key shares, posing the same usability challenges. TEE (Trusted Execution Environment) is a promising technology to avoid both, but practical implementations of TEEs suffer from various side-channel attacks that have proven hard to eliminate. This paper explores a new approach to side-channel mitigation through economic incentives for TEE-based cryptocurrency wallet solutions. By taking the cost and profit of side-channel attacks into consideration, we designed a Stick-and-Carrot-based cryptocurrency wallet, CrudiTEE, that leverages penalties (the stick) and rewards (the carrot) to disincentivize attackers from exfiltrating signing keys in the first place. We model the attacker’s behavior using a Markov Decision Process (MDP) to evaluate the effectiveness of the bounty and enable the service provider to adjust the parameters of the bounty’s reward function accordingly.more » « lessFree, publicly-accessible full text available September 23, 2025
-
Free, publicly-accessible full text available September 8, 2025
-
Storing tabular data to balance storage and query efficiency is a long-standing research question in the database community. In this work, we argue and show that a novel {\em DeepMapping} abstraction, which relies on the impressive {\em memorization} capabilities of deep neural networks, can provide better storage cost, better latency, and better run-time memory footprint, all at the same time. Such unique properties may benefit a broad class of use cases in capacity-limited devices. Our proposed DeepMapping abstraction transforms a dataset into multiple key-value mappings and constructs a multi-tasking neural network model that outputs the corresponding \textit{values} for a given input \textit{key}. To deal with memorization errors, DeepMapping couples the learned neural network with a lightweight auxiliary data structure capable of correcting mistakes. The auxiliary structure design further enables DeepMapping to efficiently deal with insertions, deletions, and updates even without retraining the mapping. We propose a multi-task search strategy for selecting the hybrid DeepMapping structures (including model architecture and auxiliary structure) with a desirable trade-off among memorization capacity, size, and efficiency. Extensive experiments with a real-world dataset, synthetic and benchmark datasets, including TPC-H and TPC-DS, demonstrated that the DeepMapping approach can better balance the retrieving speed and compression ratio against several cutting-edge competitors.more » « lessFree, publicly-accessible full text available May 15, 2025
-
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space, the Rademacher complexity of the class and the training error under any continuous loss ℓ can control the test error under all Moreau envelopes of the loss ℓ . We use our finite-sample bound to directly recover the “optimistic rate” of Zhou et al. (2021) for linear regression with the square loss, which is known to be tight for minimal ℓ2-norm interpolation, but we also handle more general settings where the label is generated by a potentially misspecified multi-index model. The same argument can analyze noisy interpolation of max-margin classifiers through the squared hinge loss, and establishes consistency results in spiked-covariance settings. More generally, when the loss is only assumed to be Lipschitz, our bound effectively improves Talagrand’s well-known contraction lemma by a factor of two, and we prove uniform convergence of interpolators (Koehler et al. 2021) for all smooth, non-negative losses. Finally, we show that application of our generalization bound using localized Gaussian width will generally be sharp for empirical risk minimizers, establishing a non-asymptotic Moreau envelope theorymore » « less