skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The development of semi-automated and automated ontology alignment techniques is an important part of realizing the potential of the Semantic Web. Until very recently, most existing work in this area was focused on finding simple (1:1) equivalence correspondences between two ontologies. However, many real-world ontology pairs involve correspondences that contain multiple entities from each ontology. These ‘complex’ alignments pose a challenge for existing evaluation approaches, which hinders the development of new systems capable of finding such correspondences. This position paper surveys and analyzes the requirements for effective evaluation of complex ontology alignments and assesses the degree to which these requirements are met by existing approaches. It also provides a roadmap for future work on this topic taking into consideration emerging community initiatives and major challenges that need to be addressed. 
    more » « less
  3. Abstract

    Snow depth on sea ice is an Essential Climate Variable and a major source of uncertainty in satellite altimetry‐derived sea ice thickness. During winter of the MOSAiC Expedition, the “KuKa” dual‐frequency, fully polarized Ku‐ and Ka‐band radar was deployed in “stare” nadir‐looking mode to investigate the possibility of combining these two frequencies to retrieve snow depth. Three approaches were investigated: dual‐frequency, dual‐polarization and waveform shape, and compared to independent snow depth measurements. Novel dual‐polarization approaches yieldedr2values up to 0.77. Mean snow depths agreed within 1 cm, even for data sub‐banded to CryoSat‐2 SIRAL and SARAL AltiKa bandwidths. Snow depths from co‐polarized dual‐frequency approaches were at least a factor of four too small and had ar20.15 or lower.r2for waveform shape techniques reached 0.72 but depths were underestimated. Snow depth retrievals using polarimetric information or waveform shape may therefore be possible from airborne/satellite radar altimeters.

     
    more » « less