skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Meng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A scanning electrochemical microscope (SECM) can directly monitor electrochemical processes at interfaces of electrodes and electrolytes and has been used as an analytical tool for lithium-ion battery (LIB) studies. Through SECM, we can visualize the electrochemical reactivities of active species in LIBs in-situ during cycling. This review begins with introducing SECM-based LIB research and then summarizes the working mechanism and operating modes of the technique as well as combinations of SECM with other techniques for LIB studies. We review the results with a focus on the interfacial properties, surface reactions and electrochemical activity of different electrode materials for LIBs. The investigations of battery degradation, kinetic parameters and electrolyte swelling by SECM are also discussed. Finally, the current limitations and perspectives are also described regarding future developments. 
    more » « less
  2. Free, publicly-accessible full text available July 7, 2024
  3. The metallic bond is arguably the most intriguing one among the three types of chemical bonds, and the resultant plasmon excitation ( e.g. in gold nanoparticles) has garnered wide interest. Recent progress in nanochemistry has led to success in obtaining atomically precise nanoclusters (NCs) of hundreds of atoms per core. In this work, thiolate-protected Au 279 (SR) 84 and Au 333 (SR) 79 NCs, both in the nascent metallic state are investigated by cryogenic optical spectroscopy down to 2.5 K. At room temperature, both NCs exhibit distinct plasmon resonances, albeit the NCs possess a gap (estimated 0.02–0.03 eV, comparable to thermal energy). Interestingly, we observe no effect on plasmons with the transition from the metallic state at r.t. to the insulating state at cryogenic temperatures (down to 2.5 K), indicating a nonthermal origin for electron-gas formation. The electronic screening-induced birth of metallic state/bonding is discussed. The obtained insights offer deeper understanding of the nascent metallic state and covalent-to-metallic bonding evolution, as well as plasmon birth from concerted excitonic transitions. 
    more » « less