skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Ninghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. The direction of electron flow in molecular optoelectronic devices is dictated by charge transfer between a molecular excited state and an underlying conductor or semiconductor. For those devices, controlling the direction and reversibility of electron flow is a major challenge. We describe here a novel, single-molecule photodiode. It is based on an internally conjugated, bi-chromophoric dyad with chemically linked (porphyrinato)zinc(II) and bis(terpyridyl)ruthenium(II) groups. On nanocrystalline, degenerately doped indium tin oxide electrodes, the dyad exhibits distinct frequency-dependent, charge-transfer characters. Variations in the light source between red (~ 1.9 eV) and blue (~ 2.7 eV) light excitation for the integrated photodiode result in switching of photocurrents between cathodic and anodic. The origin of the excitation frequency-dependent photocurrents lies in the electronic structure of the chromophore excited states, as shown by the results of theoretical calculations, laser flash photolysis and steady-state spectrophotometric measurements. 
    more » « less