Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The absence or presence of a lunar paleomagnetosphere is important because it bears directly on the volatile content of the regolith and exploration targets for Artemis and other missions to the Moon. Recent paleointensity study of samples from the Apollo missions has readdressed this question. Multiple specimens from a young 2-million-year-old glass shows a strong magnetization compatible with that induced by charge-separation in an impact plasma, whereas paleointensities of single crystals yield evidence for null magnetizations spanning 3.9 to 3.2 Ga. Together, these data are consistent with an impact mechanism for the magnetization of some lunar samples, and absence of a long-lived lunar core dynamo and paleomagnetosphere recorded in other samples. Here, we present a dataset that allows researchers to examine replicates of these measurements. For the glass, we present data from specimens that fail standard paleointensity selection criteria but nevertheless imply a complex, changing magnetic field environment. For the single crystals, the replicate measurements further illustrate the initial zero magnetization state of these materials.more » « less
-
Abstract Single crystal paleointensity (SCP) reveals that the Moon lacked a long-lived core dynamo, though mysteries remain. An episodic dynamo, seemingly recorded by some Apollo basalts, is temporally and energetically problematic. We evaluate this enigma through study of ~3.7 billion-year-old (Ga) Apollo basalts 70035 and 75035. Whole rock analyses show unrealistically high nominal magnetizations, whereas SCP indicate null fields, illustrating that the former do not record an episodic dynamo. However, deep crustal magnetic anomalies might record an early lunar dynamo. SCP studies of 3.97 Ga Apollo breccia 61016 and 4.36 Ga ferroan anorthosite 60025 also yield null values, constraining any core dynamo to the Moon’s first 140 million years. These findings suggest that traces of Earth’s Hadean atmosphere, transferred to the Moon lacking a magnetosphere, could be trapped in the buried lunar regolith, presenting an exceptional target for future exploration.more » « less
-
Plate tectonics is a fundamental factor in the sustained habitability of Earth, but its time of onset is unknown, with ages ranging from the Hadaean to Proterozoic eons1–3. Plate motion is a key diagnostic to distinguish between plate and stagnant-lid tectonics, but palaeomagnetic tests have been thwarted because the planet’s oldest extant rocks have been metamorphosed and/or deformed4. Herein, we report palaeointensity data from Hadaean-age to Mesoarchaean-age single detrital zircons bearing primary magnetite inclusions from the Barberton Greenstone Belt of South Africa5. These reveal a pattern of palaeointensities from the Eoarchaean (about 3.9 billion years ago (Ga)) to Mesoarchaean (about 3.3 Ga) eras that is nearly identical to that defined by primary magnetizations from the Jack Hills (JH; Western Australia)6,7, further demonstrating the recording fidelity of select detrital zircons. Moreover, palaeofield values are nearly constant between about 3.9 Ga and about 3.4 Ga. This indicates unvarying latitudes, an observation distinct from plate tectonics of the past 600 million years (Myr) but predicted by stagnant-lid convection. If life originated by the Eoarchaean8, and persisted to the occurrence of stromatolites half a billion years later9, it did so when Earth was in a stagnant-lid regime, without plate-tectonics-driven geochemical cycling.more » « less
-
Abstract Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic fields overlaps temporally with atmospheric and oceanic oxygenation inferred from numerous geochemical proxies. This concurrence raises the question of whether enhanced H ion loss in a reduced magnetic field contributed to the oxygenation, ultimately allowing diversification of macroscopic and mobile animals of the Ediacara Fauna.more » « less
-
Abstract Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (~565 Ma) rocks, but the transition to stronger strengths has been unclear. Herein, we present single crystal paleointensity results from early Cambrian (~532 Ma) anorthosites of Oklahoma. These yield a time-averaged dipole moment 5 times greater than that of the Ediacaran Period. This rapid renewal of the field, together with data defining ultralow strengths, constrains ICN to ~550 Ma. Thermal modeling using this onset age suggests the inner core had grown to 50% of its current radius, where seismic anisotropy changes, by ~450 Ma. We propose the seismic anisotropy of the outermost inner core reflects development of a global spherical harmonic degree-2 deep mantle structure at this time that has persisted to the present day. The imprint of an older degree-1 pattern is preserved in the innermost inner core.more » « less
-
Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3 He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years.more » « less
An official website of the United States government
