skip to main content


Search for: All records

Creators/Authors contains: "Zhou, Xiaogen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Most proteins in nature contain multiple folding units (or domains). The revolutionary success of AlphaFold2 in single-domain structure prediction showed potential to extend deep-learning techniques for multi-domain structure modeling. This work presents a significantly improved method, DEMO2, which integrates analogous template structural alignments with deep-learning techniques for high-accuracy domain structure assembly. Starting from individual domain models, inter-domain spatial restraints are first predicted with deep residual convolutional networks, where full-length structure models are assembled using L-BFGS simulations under the guidance of a hybrid energy function combining deep-learning restraints and analogous multi-domain template alignments searched from the PDB. The output of DEMO2 contains deep-learning inter-domain restraints, top-ranked multi-domain structure templates, and up to five full-length structure models. DEMO2 was tested on a large-scale benchmark and the blind CASP14 experiment, where DEMO2 was shown to significantly outperform its predecessor and the state-of-the-art protein structure prediction methods. By integrating with new deep-learning techniques, DEMO2 should help fill the rapidly increasing gap between the improved ability of tertiary structure determination and the high demand for the high-quality multi-domain protein structures. The DEMO2 server is available at https://zhanggroup.org/DEMO/.

     
    more » « less
  2. Abstract

    Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling.

     
    more » « less
  3. Kolodny, Rachel (Ed.)
    The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top- L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top- L /5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library. 
    more » « less
  4. Abstract Motivation Protein domains are subunits that can fold and function independently. Correct domain boundary assignment is thus a critical step toward accurate protein structure and function analyses. There is, however, no efficient algorithm available for accurate domain prediction from sequence. The problem is particularly challenging for proteins with discontinuous domains, which consist of domain segments that are separated along the sequence. Results We developed a new algorithm, FUpred, which predicts protein domain boundaries utilizing contact maps created by deep residual neural networks coupled with coevolutionary precision matrices. The core idea of the algorithm is to retrieve domain boundary locations by maximizing the number of intra-domain contacts, while minimizing the number of inter-domain contacts from the contact maps. FUpred was tested on a large-scale dataset consisting of 2549 proteins and generated correct single- and multi-domain classifications with a Matthew’s correlation coefficient of 0.799, which was 19.1% (or 5.3%) higher than the best machine learning (or threading)-based method. For proteins with discontinuous domains, the domain boundary detection and normalized domain overlapping scores of FUpred were 0.788 and 0.521, respectively, which were 17.3% and 23.8% higher than the best control method. The results demonstrate a new avenue to accurately detect domain composition from sequence alone, especially for discontinuous, multi-domain proteins. Availability and implementation https://zhanglab.ccmb.med.umich.edu/FUpred. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract

    This article reports and analyzes the results of protein contact and distance prediction by our methods in the 14th Critical Assessment of techniques for protein Structure Prediction (CASP14). A new deep learning‐based contact/distance predictor was employed based on the ensemble of two complementary coevolution features coupling with deep residual networks. We also improved our multiple sequence alignment (MSA) generation protocol with wholesale meta‐genome sequence databases. On 22 CASP14 free modeling (FM) targets, the proposed model achieved a top‐L/5 long‐range precision of 63.8% and a mean distance bin error of 1.494. Based on the predicted distance potentials, 11 out of 22 FM targets and all of the 14 FM/template‐based modeling (TBM) targets have correctly predicted folds (TM‐score >0.5), suggesting that our approach can provide reliable distance potentials for ab initio protein folding.

     
    more » « less
  6. Abstract

    In this article, we report 3D structure prediction results by two of our best server groups (“Zhang‐Server” and “QUARK”) in CASP14. These two servers were built based on the D‐I‐TASSER and D‐QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I‐TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact‐based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network‐based method, DeepPotential, to predict multiple spatial restraints by co‐evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM‐scores of the first models produced by D‐I‐TASSER and D‐QUARK were 96% and 112% higher than those constructed by I‐TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well‐tuned force field that combines spatial restraints, threading templates, and generic knowledge‐based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi‐domain proteins due to low accuracy in inter‐domain distance prediction and modeling protein domains from oligomer complexes, as the co‐evolutionary analysis cannot distinguish inter‐chain and intra‐chain distances. Specifically tuning the deep learning‐based predictors for multi‐domain targets and protein complexes may be helpful to address these issues.

     
    more » « less