skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Yichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Varying coefficient models are a flexible extension of generic parametric models whose coefficients are functions of a set of effect-modifying covariates instead of fitted constants. They are capable of achieving higher model complexity while preserving the structure of the underlying parametric models, hence generating interpretable predictions. In this paper we study the use of gradient boosted decision trees as those coefficient-deciding functions in varying coefficient models with linearly structured outputs. In contrast to the traditional choices of splines or kernel smoothers, boosted trees are more flexible since they require no structural assumptions in the effect modifier space. We introduce our proposed method from the perspective of a localized version of gradient descent, prove its theoretical consistency under mild assumptions commonly adapted by decision tree research, and empirically demonstrate that the proposed tree boosted varying coefficient models achieve high performance qualified by their training speed, prediction accuracy and intelligibility as compared to several benchmark algorithms. 
    more » « less