skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Yijing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A path integral Monte Carlo method (PIMC) based on a Feynman-Kac formula for the Laplace equation with mixed boundary conditions is proposed to solve the forward problem of the electrical impedance tomography (EIT). The forward problem is an important part of iterative algorithms of the inverse EIT problem, and the proposed PIMC provides a local solution to find the potentials and currents on individual electrodes. Improved techniques are proposed to compute with better accuracy both the local time of reflecting Brownian motions (RBMs) and the Feynman-Kac formula for mixed boundary problems of the Laplace equation. Accurate voltage-to-current maps on the electrodes of a model 3-D EIT problem with eight electrodes are obtained by solving a mixed boundary problem with the proposed PIMC method. 
    more » « less
    Free, publicly-accessible full text available March 1, 2024