skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Yiqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.

    more » « less
  2. null (Ed.)
    Simulation of quantum systems is challenging due to the exponential size of the state space. Tensor networks provide a systematically improvable approximation for quantum states. 2D tensor networks such as Projected Entangled Pair States (PEPS) are well-suited for key classes of physical systems and quantum circuits. However, direct contraction of PEPS networks has exponential cost, while approximate algorithms require computations with large tensors. We propose new scalable algorithms and software abstractions for PEPS-based methods, accelerating the bottleneck operation of contraction and refactorization of a tensor subnetwork. We employ randomized SVD with an implicit matrix to reduce cost and memory footprint asymptotically. Further, we develop a distributed-memory PEPS library and study accuracy and efficiency of alternative algorithms for PEPS contraction and evolution on the Stampede2 supercomputer. We also simulate a popular near-term quantum algorithm, the Variational Quantum Eigensolver (VQE), and benchmark Imaginary Time Evolution (ITE), which compute ground states of Hamiltonians. 
    more » « less