Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We report the fabrication of hexagonal-boron-nitride (hBN) encapsulated multi-terminal WSe_2 Hall bars with 2D/2D low-temperature Ohmic contacts as a platform for investigating the two-dimensional (2D) metal-insulator transition. We demonstrate that the WSe_2 devices exhibit Ohmic behavior down to 0.25 K and at low enough excitation voltages to avoid current-heating effects. Additionally, the high-quality hBN-encapsulated WSe_2 devices in ideal Hall-bar geometry enable us to accurately determine the carrier density. Measurements of the temperature (T) and density (n_s) dependence of the conductivity \sigma(T,n_s) demonstrate scaling behavior consistent with a metal-insulator quantum phase transition driven by electron-electron interactions, but where disorder-induced local magnetic moments are also present. Our findings pave the way for further studies of the fundamental quantum mechanical properties of 2D transition metal dichalcogenides using the same contact engineering.more » « less
-
We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe 2 ) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW μm −2 ). Our experimental results have shown that this reversible doping process is mainly attributed to two types of defects in h-BN substrates. Moreover, the photo-doped WSe 2 transistors can be stable for more than one week in a dark environment and maintain the high on/off ratio (10 8 ) and carrier mobility, since there are no additional impurities involved during the photo-induced doping process to increase the columbic scattering in the conducting channel. These fundamental studies not only provide an accessible strategy to control the charge doping level and then to achieve a writing/erasing process in 2D transistors, but also shed light on the defect states and interfaces in 2D materials.more » « less
-
We investigate electronic and optoelectronic properties of few-layer palladium diselenide (PdSe 2 ) phototransistors through spatially-resolved photocurrent measurements. A strong photocurrent resonance peak is observed at 1060 nm (1.17 eV), likely attributed to indirect optical transitions in few-layer PdSe 2 . More interestingly, when the thickness of PdSe 2 flakes increases, more and more photocurrent resonance peaks appear in the near-infrared region, suggesting strong interlayer interactions in few-layer PdSe 2 help open up more optical transitions between the conduction and valence bands of PdSe 2 . Moreover, gate-dependent measurements indicate that remarkable photocurrent responses at the junctions between PdSe 2 and metal electrodes primarily result from the photovoltaic effect when a PdSe 2 phototransistor is in the off-state and are partially attributed to the photothermoelectric effect when the device turns on. We also demonstrate PdSe 2 devices with a Seebeck coefficient as high as 74 μV K −1 at room temperature, which is comparable with recent theoretical predications. Additionally, we find that the rise and decay time constants of PdSe 2 phototransistors are ∼156 μs and ∼163 μs, respectively, which are more than three orders of magnitude faster than previous PdSe 2 work and two orders of magnitude over other noble metal dichalcogenide phototransistors, offering new avenues for engineering future optoelectronics.more » « less
-
Abstract Gate‐/wavelength‐dependent scanning photocurrent measurements of black phosphorous (BP)–MoS2heterojunctions have shown that the Schottky barrier at the MoS2–metal interface plays an important role in the photoresponse dynamics of the heterojunction. When the Fermi level is close to the conduction band of MoS2, photoexcited carriers can tunnel through the narrow depletion region at the MoS2–metal interface, leading to a short response time of 13 µs regardless of the incident laser wavelength. This response speed is comparable or better than that of other few‐layer BP–MoS2heterojunctions. Conversely, when the MoS2channel is in the off‐state, the resulting sizeable Schottky barrier and depletion width make it difficult for photoexcited carriers to overcome the barrier. This significantly delays the carrier transit time and thus the photoresponse speed, leading to a wavelength‐dependent response time since the photoexcited carriers induced by short wavelength photons have a higher probability to overcome the Schottky barrier at the MoS2–metal interface than long wavelength photons. These studies not only shed light on the fundamental understanding of photoresponse dynamics in BP–MoS2heterojunctions, but also open new avenues for engineering the interfaces between 2D materials and metal contacts to reduce the response time of 2D optoelectronics.