- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Zhou, Zijun (5)
-
Smirnov, Andrey (3)
-
Chen, Shuming (2)
-
Hong, Yubiao (2)
-
Houk, K. N. (2)
-
Meggers, Eric (2)
-
Rimányi, Richárd (2)
-
Tan, Yuqi (2)
-
Varchenko, Alexander (2)
-
Harms, Klaus (1)
-
Hemming, Marcel (1)
-
Ivlev, Sergei (1)
-
Winterling, Erik (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rimányi, Richárd; Smirnov, Andrey; Zhou, Zijun; Varchenko, Alexander (, International Mathematics Research Notices)Abstract We consider a pair of quiver varieties $$(X;X^{\prime})$$ related by 3D mirror symmetry, where $$X =T^*{Gr}(k,n)$$ is the cotangent bundle of the Grassmannian of $$k$$-planes of $$n$$-dimensional space. We give formulas for the elliptic stable envelopes on both sides. We show an existence of an equivariant elliptic cohomology class on $$X \times X^{\prime} $$ (the mother function) whose restrictions to $$X$$ and $$X^{\prime} $$ are the elliptic stable envelopes of those varieties. This implies that the restriction matrices of the elliptic stable envelopes for $$X$$ and $$X^{\prime}$$ are equal after transposition and identification of the equivariant parameters on one side with the Kähler parameters on the dual side.more » « less
-
Tan, Yuqi; Chen, Shuming; Zhou, Zijun; Hong, Yubiao; Ivlev, Sergei; Houk, K. N.; Meggers, Eric (, Angewandte Chemie International Edition)null (Ed.)
-
Rimányi, Richárd; Smirnov, Andrey; Varchenko, Alexander; Zhou, Zijun (, Symmetry, Integrability and Geometry: Methods and Applications)
-
Zhou, Zijun; Chen, Shuming; Hong, Yubiao; Winterling, Erik; Tan, Yuqi; Hemming, Marcel; Harms, Klaus; Houk, K. N.; Meggers, Eric (, Journal of the American Chemical Society)
An official website of the United States government
