skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Chenchang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the nonlinear $$\sigma$$-model in $${(d+1)}$$-dimensional spacetime with connected target space $$K$$ and show that, at energy scales below singular field comfigurations (such as vortices), it has an emergent non-invertible higher symmetry. The symmetry defects of the emergent symmetry are described by the $$d$$-representations of a discrete $$d$$-group $$\mathbb{G}^{(d)}$$ (i.e. the emergent symmetry is the dual of the invertible $$d$$-group $$\mathbb{G}^{(d)}$$ symmetry). The $$d$$-group $$\mathbb{G}^{(d)}$$ is determined such that its classifying space $$B\mathbb{G}^{(d)}$$ is given by the $$d$$-th Postnikov stage of $$K$$. In $(2+1)$D and for finite $$\mathbb{G}^{(2)}$$, this symmetry is always holo-equivalent to an invertible $${0}$$-form---ordinary---symmetry with potential 't Hooft anomaly. The singularity-free disordered phase of the nonlinear $$\sigma$$-model spontaneously breaks this symmetry, and when $$\mathbb{G}^{(d)}$$ is finite, it is described by the deconfined phase of $$\mathbb{G}^{(d)}$$ higher gauge theory. We consider examples of such disordered phases. We focus on a singularity-free $S^2$ nonlinear $$\sigma$$-model in $${(3+1)}$$D and show that it has an emergent non-invertible higher symmetry. As a result, its disordered phase is described by axion electrodynamics and has two gapless modes corresponding to a photon and a massless axion. Notably, this non-perturbative result is different from the results obtained using the $S^N$ and $$\mathbb{C}P^{N-1}$$ nonlinear $$\si$$-models in the large-$$N$$ limit. 
    more » « less