skip to main content

Search for: All records

Creators/Authors contains: "Zhu, Hejun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the past decade, the seismicity rate in the state of Oklahoma has increased significantly, which has been linked to industrial operations, such as saltwater injection and hydraulic fracturing. Taking advantage of induced earthquakes and recently deployed seismometers, we construct a 3‐D radially anisotropic seismic velocity model for the crust of Oklahoma by using full waveform inversion. To mitigate the well‐known cycle‐skipping problem, we use misfit functions based on phase and waveform differences in several frequency bands. Relative velocity perturbations in the inverted model allow us to delineate major geological provinces in Oklahoma, such as the Anadarko Basin and the Cherokee Platform/Shelf. In addition, radial anisotropy in the inverted model reflects deformation within the crust of Oklahoma, which might correlate with sedimentary layering, microcracks/fractures, as well as dominant orientation of anisotropic minerals. The crystalline basement beneath Oklahoma can be inferred from the new velocity model, which enables us to better classify induced seismicity in current earthquake catalogs. Furthermore, synthetic experiments suggest that the new velocity model enables us to better constrain earthquake locations in Oklahoma, especially for determining their depths, which are important for investigating induced seismicity.

    more » « less
  2. Abstract Our study is to build an aftershock catalog with a low magnitude of completeness for the 2020 Mw 6.5 Stanley, Idaho, earthquake. This is challenging because of the low signal-to-noise ratios for recorded seismograms. Therefore, we apply convolutional neural networks (CNNs) and use 2D time–frequency feature maps as inputs for aftershock detection. Another trained CNN is used to automatically pick P-wave arrival times, which are then used in both nonlinear and double-difference earthquake location algorithms. Our new one-month-long catalog has 4644 events and a completeness magnitude (Mc) 1.9, which has over seven times more events and 0.9 lower Mc than the current U.S. Geological Survey National Earthquake Information Center catalog. The distribution and expansion of these aftershocks improve the resolution of two north-northwest-trending faults with different dip angles, providing further support for a central stepover region that changed the earthquake rupture trajectory and induced sustained seismicity. 
    more » « less
  3. Abstract

    One important feature of the Greenland Ice Sheet (GrIS) change is its strong seasonal fluctuation. Taking advantage of deployed seismographic stations in Greenland, we apply cross‐component auto‐correlation of seismic ambient noise to measure in‐situ near surface relative velocity change (dv/v) in different regions of Greenland. Our results demonstrate thatdv/vmeasurements for most stations have less than 3 months lag times in comparison to the surface mass change. These various lag times may provide us constraints for the thickness of the subglacial till layer over different regions in Greenland. Moreover, in southwest Greenland, we observe a change in the long‐term trend ofdv/vfor three stations, which might be consistent with the mass change rate (dM/dt) due to the “2012–2013 warm‐cold transition.” These observations suggest that seismic noise auto‐correlation technique may be used to monitor both seasonal and long‐term changes of the GrIS.

    more » « less
  4. Approximately two-thirds of Earth’s outermost shell is composed of oceanic plates that form at spreading ridges and recycle back to Earth’s interior in subduction zones. A series of physical and chemical changes occur in the subducting lithospheric slab as the temperature and pressure increase with depth. In particular, olivine, the most abundant mineral in the upper mantle, progressively transforms to its high-pressure polymorphs near the mantle transition zone, which is bounded by the 410 km and 660 km discontinuities. However, whether olivine still exists in the core of slabs once they penetrate the 660 km discontinuity remains debated. Based on SKS and SKKS shear-wave differential splitting times, we report new evidence that reveals the presence of metastable olivine in the uppermost lower mantle within the ancient Farallon plate beneath the eastern United States. We estimate that the low-density olivine layer in the subducted Farallon slab may compensate the high density of the rest of the slab associated with the low temperature, leading to neutral buoyancy and preventing further sinking of the slab into the deeper part of the lower mantle. 
    more » « less
  5. Abstract

    Significant imbalances in terrestrial water storage (TWS) and severe drought have been observed around the world as a consequence of climate changes. Improving our ability to monitor TWS and drought is critical for water‐resource management and water‐deficit estimation. We use continuous seismic ambient noise to monitor temporal evolution of near‐surface seismic velocity,dv/v, in central Oklahoma from 2013 to 2022. The deriveddv/vis found to be negatively correlated with gravitational measurements and groundwater depths, showing the impact of groundwater storage on seismic velocities. The hydrological effects involving droughts and recharge of groundwater occur on a multi‐year time scale and dominate the overall derived velocity changes. The thermoelastic response to atmospheric temperature variations occurs primarily on a yearly timescale and dominates the superposed seasonal velocity changes in this study. The occurrences of droughts appear simultaneously with local peaks ofdv/v, demonstrating the sensitivity of near‐surface seismic velocities to droughts.

    more » « less
  6. null (Ed.)
    Abstract The importance of a low-viscosity asthenosphere underlying mobile plates has been highlighted since the earliest days of the plate tectonics revolution. However, absolute asthenospheric viscosities are still poorly constrained, with estimates spanning up to 3 orders of magnitude. Here we follow a new approach using analytic solutions for Poiseuille-Couette channel flow to compute asthenospheric viscosities under the Caribbean. We estimate Caribbean dynamic topography and the associated pressure gradient, which, combined with flow velocities estimated from geologic markers and tomographic structure, yield our best-estimate asthenospheric viscosity of (3.0 ± 1.5)*10 18 Pa s. This value is consistent with independent estimates for non-cratonic and oceanic regions, and challenges the hypothesis that higher-viscosity asthenosphere inferred from postglacial rebound is globally-representative. The active flow driven by Galapagos plume overpressure shown here contradicts the traditional view that the asthenosphere is only a passive lubricating layer for Earth’s tectonic plates. 
    more » « less
  7. Abstract

    Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle.

    more » « less