- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhu, Qianhong (2)
-
Callander, Grace (1)
-
Chu, Chiheng (1)
-
He, Ning (1)
-
Hu, Shu (1)
-
Huang, Dahong (1)
-
Kim, Jae-Hong (1)
-
Kim, Jaehong (1)
-
Li, Jiahui (1)
-
Li, Yaogang (1)
-
Niu, Junfeng (1)
-
Rigby, Kali (1)
-
Shen, Xin (1)
-
Solanki, Devan (1)
-
Stavitski, Eli (1)
-
Wang, Hongzhi (1)
-
Weon, Seunghyun (1)
-
Xu, Lei (1)
-
Zhou, Xuechen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One key objective in electrocatalysis is to design selective catalysts, particularly in cases where the desired products require thermodynamically unfavorable pathways. Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) via the two-electron water oxidation reaction (2e − WOR) requires a +0.54 V higher potential than four-electron O 2 evolution. So far, best-performing electrocatalysts require considerable overpotentials before reaching peak faradaic efficiency. We present Mn-alloyed TiO 2 coatings prepared by atomic layer deposition (ALD) and annealing as a stable and selective electrocatalyst for 2e − WOR. Faradaic efficiency of >90% at < 150 mV overpotentials was achieved for H 2 O 2 production, accumulating 2.97 mM H 2 O 2 after 8 hours. Nanoscale mixing of Mn 2 O 3 and TiO 2 resulted in a partially filled, highly conductive Mn 3+ intermediate band (IB) within the TiO 2 mid-gap to transport charge across the (Ti,Mn)O x coating. This IB energetically matched that of H 2 O 2 -producing surface intermediates, turning a wide bandgap oxide into a selective electrocatalyst capable of operating in the dark. However, the high selectivity is limited to the low overpotential regime, which limits the system to low current densities and requires further research into increasing turn-over frequency per active site.more » « less
-
Huang, Dahong; He, Ning; Zhu, Qianhong; Chu, Chiheng; Weon, Seunghyun; Rigby, Kali; Zhou, Xuechen; Xu, Lei; Niu, Junfeng; Stavitski, Eli; et al (, ACS Catalysis)null (Ed.)
An official website of the United States government
