skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhu, Weidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract

    Tensegrity structures become important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on their dynamic analyses mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study proposes a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer is used with a mirror for extending its field of view to measure full-field vibration of a novel three-strut metal tensegrity column with free boundaries. Tensions and axial stiffnesses of its cable members are determined using natural frequencies of their transverse and longitudinal modes, respectively, to build its theoretical model for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and theoretical mode shapes are used to identify their paired modes. Modal parameters of the first 15 elastic modes of the tensegrity column identified from the experiment, including those of the overall structure and its cable members, can be classified into five mode groups depending on their types. Modes paired between experimental and theoretical results have MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The proposed non-contact 3D vibration measurement approach allows accurate estimation of 3D full-field modal parameters of the tensegrity column.

     
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  3. Free, publicly-accessible full text available December 2, 2025
  4. Abstract

    Tensegrity structures have emerged as important components of various engineering structures due to their high stiffness, light weight, and deployable capability. Existing studies on dynamic analyses of tensegrity structures mainly focus on responses of their nodal points while overlook deformations of their cable and strut members. This study aims to propose a non-contact approach for experimental modal analysis of a tensegrity structure to identify its three-dimensional (3D) natural frequencies and full-field mode shapes, which include modes with deformations of its cable and strut members. A 3D scanning laser Doppler vibrometer (SLDV) is used with a mirror for extending its field of view to measure full-field vibration of a three-strut tensegrity column with free boundaries. Tensions and axial stiffnesses of cable members of the tensegrity column are determined using natural frequencies of their transverse and longitudinal modes, respectively, and used to build a numerical model of the tensegrity column for dynamic analysis and model validation purposes. Modal assurance criterion (MAC) values between experimental and numerical mode shapes are used to identify their paired modes. Natural frequencies and mode shapes of the first 15 elastic modes of the tensegrity column are identified from the experiment, which include modes of the overall structure and its cable members. These identified modes can be classified into five mode groups depending on their types. Five modes are paired between experimental and numerical results with MAC values larger than 78%. Differences between natural frequencies of paired modes of the tensegrity column are less than 15%. The non-contact 3D vibration measurement approach presented in this work can measure responses of nodal points, as well as deformations of cable and strut members, of the tensegrity column, and allows accurate estimation of its 3D full-field modal parameters.

     
    more » « less
    Free, publicly-accessible full text available August 25, 2025
  5. Developing a miniatured laser vibrometer becomes important for many engineering areas, such as experimental and operational modal analyses, model validation, and structural health monitoring. Due to its compact size and light weight, a miniatured laser vibrometer can be attached to various mobilized platforms, such as an unmanned aerial vehicle and a robotic arm whose payloads can usually not be large, to achieve a flexible vibration measurement capability. However, integrating optics into a miniaturized laser vibrometer presents several challenges. These include signal interference from ghost reflectance signals generated by the sub-components of integrated photonics, polarization effects caused by waveguide structures, wavelength drifting due to the semiconductor laser, and the poorer noise characteristics of an integrated laser chip compared to a non-integrated circuit. This work proposes a novel chip-based high-precision laser vibrometer by incorporating two or more sets of quadrature demodulation networks into its design. An additional set of quadrature demodulation networks with a distinct reference arm delay line length can be used to conduct real-time compensation to mitigate linear interference caused by temperature and environmental variations. A series of vibration measurements with frequencies ranging from 0.1 Hz to 1 MHz were conducted using the proposed laser vibrometer to show its repeatability and accuracy in vibration and ultrasonic vibration measurements, and its robustness to test surface conditions. The proposed laser vibrometer has the advantage of directly measuring the displacement response of a vibrating structure rather than integrating its velocity response to yield the measured displacement with a conventional laser Doppler vibrometer.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  6. Free, publicly-accessible full text available June 4, 2025