skip to main content

Search for: All records

Creators/Authors contains: "Zhu, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of enzymes in MOFs/COFs using site-directed spin labeling and electron paramagnetic resonance spectroscopy. The protocol is demonstrated using lysozyme and can be generalized to other enzymes.
    Free, publicly-accessible full text available September 17, 2022
  2. Stress-strain responses and twinning characteristics are studied for a rolled AZ31B magnesium alloy under three different stress states: tension along the normal direction (NDT), compression along the rolled direction (RDC), and torsion about the normal direction (NDTOR) using companion specimens interrupted at incremental strain levels. Tension twinning is extensively induced in twinning-favorable NDT and RDC. All the six variants of tension twin are activated under NDT, whereas a maximum of four variants is activated under RDC. Under NDTOR, both tension twins and compression twins are activated at relatively large strains and twinning occurs in a small fraction of favored grainsmore »rather than in the majority of grains. Secondary and tertiary twins are observed in the favorably-orientated grains at high strain levels. Deformation under each stress state shows three stages of strain hardening rate: fast decrease (Stage I), sequential increase (Stage II), and progressive decrease (Stage III). The increase in the hardening rate, which is more significant under NDT and RDC as compared to NDTOR, is attributed to the hardening effect of twin boundaries and twinning texture-induced slip activities. The hardening effect of twin boundaries include the dynamic Hall-Petch hardening induced by the multiplication of twin boundaries (TBs) and twin-twin boundaries (TTBs) as well as the hardening effect associated with the energetically unfavorable TTB formation. When the applied plastic strain is larger than 0.05 under NDT and RDC, the tension twin volume fraction is higher than 50%. The twinning-induced texture leads to the activation of non-basal slips mainly in the twinned volume, i.e. prismatic slips under NDT and pyramidal slips under RDC. The low work hardening under NDTOR is due to the prevailing basal slips with reduced twinning activities under NDTOR.« less
  3. Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy probes the otherwise inaccessible structural information in complex biological systems. We recently extended SDSL-EPR to reveal the relative orientation and backbone dynamics of enzymes upon encapsulation in mesoporous nanostructures, which set the structural basis underlying the observed biocatalytic activity. Our strategy had generated interest in the biocatalysis community, and thus in this resource article, we contribute an introduction to the principles and experimental procedure that generalize SDSL-EPR to heterogeneous biocatalysis. We will focus on enzymes in mesoporous materials with examples demonstrating the methods and cautions of potential pitfalls.more »The ultimate goal is to provide the biocatalysis community with a powerful resource to fill in a long-standing knowledge gap in heterogeneous biocatalysis and the structure-function relationship of enzymes at the interface of enzyme-mesoporous materials and utilize the structural insights to guide the rational design of porous platforms for enzyme immobilization.« less
  4. Co-precipitation of enzymes in metal-organic frameworks is a unique enzyme-immobilization strategy but is challenged by weak acid-base stability. To overcome this drawback, we discovered that Ca2+ can co-precipitate with carboxylate ligands and enzymes under ambient aqueous conditions and form enzyme@metal-organic material composites stable under a wide range of pHs (3.7–9.5). We proved this strategy on four enzymes with varied isoelectric points, molecular weights, and substrate sizes—lysozyme, lipase, glucose oxidase (GOx), and horseradish peroxidase (HRP)—as well as the cluster of HRP and GOx. Interestingly, the catalytic efficiency of the studied enzymes was found to depend on the ligand, probing the originsmore »of which resulted in a correlation among enzyme backbone dynamics, ligand selection, and catalytic efficiency. Our approach resolved the long-lasting stability issue of aqueous-phase co-precipitation and can be generalized to biocatalysis with other enzymes to benefit both research and industry.« less