Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 15, 2025
-
Free, publicly-accessible full text available November 14, 2025
-
Free, publicly-accessible full text available August 24, 2025
-
Contrastive learning is an effective unsupervised method in graph representation learning. The key component of contrastive learning lies in the construction of positive and negative samples. Previous methods usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based contrastive learning method has advanced to show great power in the visual domain, and some works have extended this method from images to graphs. However, unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and it is much harder to provide high-quality contrastive samples, which leaves much space for improvement. In this work, by introducing an adversarial graph view for data augmentation, we propose a simple but effective method,Adversarial Graph Contrastive Learning(ArieL), to extract informative contrastive samples within reasonable constraints. We develop a new technique calledinformation regularizationfor stable training and use subgraph sampling for scalability. We generalize our method from node-level contrastive learning to the graph level by treating each graph instance as a super-node.ArieLconsistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks on real-world datasets. We further demonstrate thatArieLis more robust in the face of adversarial attacks.more » « lessFree, publicly-accessible full text available May 31, 2025
-
Free, publicly-accessible full text available May 7, 2025
-
Contrastive learning is an effective unsupervised method in graph representation learning. Recently, the data augmentation based con- trastive learning method has been extended from images to graphs. However, most prior works are directly adapted from the models designed for images. Unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples, which are the key to the performance of contrastive learning models. This leaves much space for improvement over the existing graph contrastive learning frameworks. In this work, by introducing an adversarial graph view and an information regularizer, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ArieL), to extract informative contrastive samples within a reasonable constraint. It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets and further improves the robustness of graph contrastive learning.more » « less
-
Co-evolving sequences are ubiquitous in a variety of applications, where different sequences are often inherently inter-connected with each other. We refer to such sequences, together with their inherent connections modeled as a structured network, as network of co-evolving sequences (NoCES). Typical NoCES applications in- clude road traffic monitoring, company revenue prediction, motion capture, etc. To date, it remains a daunting challenge to accurately model NoCES due to the coupling between network structure and sequences. In this paper, we propose to modeling NoCES with the aim of simultaneously capturing both the dynamics and the inter- play between network structure and sequences. Specifically, we propose a joint learning framework to alternatively update the network representations and sequence representations as the se- quences evolve over time. A unique feature of our framework lies in that it can deal with the case when there are co-evolving sequences on both network nodes and edges. Experimental evaluations on four real datasets demonstrate that the proposed approach (1) out- performs the existing competitors in terms of prediction accuracy, and (2) scales linearly w.r.t. the sequence length and the network size.more » « less