skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhu, Ziyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Unlike temporally symmetric inferences about simple sequences, inferences about our own lives are asymmetric: we are better able to infer the past than the future, since we remember our past but not our future. Here we explore whether there are asymmetries in inferences about the unobserved pasts and futures of other people’s lives. In two experiments (analyses of the replication experiment were pre-registered), our participants view segments of two character-driven television dramas and write out what they think happens just before or after each just-watched segment. Participants are better at inferring unseen past (versus future) events. This asymmetry is driven by participants’ reliance on characters’ conversational references in the narrative, which tend to favor the past. This tendency is also replicated in a large-scale analysis of conversational references in natural conversations. Our work reveals a temporal asymmetry in how observations of other people’s behaviors can inform inferences about the past and future.

     
    more » « less
  2. Studies of moiré systems have explained the effect of superlattice modulations on their properties, demonstrating new correlated phases. However, most experimental studies have focused on a few layers in two-dimensional systems. Extending twistronics to three dimensions, in which the twist extends into the third dimension, remains underexplored because of the challenges associated with the manual stacking of layers. Here we study three-dimensional twistronics using a self-assembled twisted spiral superlattice of multilayered WS2. Our findings show an opto-twistronic Hall effect driven by structural chirality and coherence length, modulated by the moiré potential of the spiral superlattice. This is an experimental manifestation of the noncommutative geometry of the system. We observe enhanced light–matter interactions and an altered dependence of the Hall coefficient on photon momentum. Our model suggests contributions from higher-order quantum geometric quantities to this observation, providing opportunities for designing quantum-materials-based optoelectronic lattices with large nonlinearities. 
    more » « less
    Free, publicly-accessible full text available October 3, 2025
  3. Moiré superlattices formed by twisting trilayers of graphene are a useful model for studying correlated electron behaviour and offer several advantages over their formative bilayer analogues, including a more diverse collection of correlated phases and more robust superconductivity. Spontaneous structural relaxation alters the behaviour of moiré superlattices considerably and has been suggested to play an important role in the relative stability of superconductivity in trilayers. Here we use an interferometric four-dimensional scanning transmission electron microscopy approach to directly probe the local graphene layer alignment over a wide range of trilayer graphene structures. Our results inform a thorough understanding of how reconstruction modulates the local lattice symmetries crucial for establishing correlated phases in twisted graphene trilayers, evincing a relaxed structure that is markedly different from that proposed previously. 
    more » « less
  4. Abstract

    The rotation of Earth breaks time-reversal and reflection symmetries in an opposite sense north and south of the equator, leading to a topological origin for certain atmospheric and oceanic equatorial waves. Away from the equator, the rotating shallow-water and stably stratified primitive equations exhibit Poincaré inertia–gravity waves that have nontrivial topology as evidenced by their strict superinertial time scale and a phase singularity in frequency–wavevector space. This nontrivial topology then predicts, via the principle of bulk-interface correspondence, the existence of two equatorial waves along the equatorial interface, the Kelvin and Yanai waves. To directly test the nontrivial topology of Poincaré-gravity waves in observations, we examine ERA5 data and study cross correlations between the wind velocity and geopotential height of the midlatitude stratosphere at the 50 hPa height. We find the predicted vortex and antivortex in the relative phase of the geopotential height and velocity at the high frequencies of the waves. By contrast, lower-frequency planetary waves are found to have trivial topology also as expected from theory. These results demonstrate a new way to understand stratospheric waves and provide a new qualitative tool to investigate waves in other components of the climate system.

     
    more » « less
  5. Abstract The relativistic charge carriers in monolayer graphene can be manipulated in manners akin to conventional optics. Klein tunneling and Veselago lensing have been previously demonstrated in ballistic graphene pn-junction devices, but collimation and focusing efficiency remains relatively low, preventing realization of advanced quantum devices and controlled quantum interference. Here, we present a graphene microcavity defined by carefully-engineered local strain and electrostatic fields. Electrons are manipulated to form an interference path inside the cavity at zero magnetic field via consecutive Veselago refractions. The observation of unique Veselago interference peaks via transport measurement and their magnetic field dependence agrees with the theoretical expectation. We further utilize Veselago interference to demonstrate localization of uncollimated electrons and thus improvement in collimation efficiency. Our work sheds new light on relativistic single-particle physics and provide a new device concept toward next-generation quantum devices based on manipulation of ballistic electron trajectory. 
    more » « less
  6. Scanning tunneling microscopy reveals lattice reconstruction in a moire material. 
    more » « less