skip to main content

Search for: All records

Creators/Authors contains: "Zhuang, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Noise and inconsistency commonly exist in real-world information networks, due to the inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent graph convolutional networks (GCNs) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. Noisy node content, combined with sparse features, provides essential challenges for existing methods to be used in real-world noisy networks. In this article, we propose feature-based attention GCN (FA-GCN), a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each node feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes to learn and vary feature importance, with respect to their connections. By using a spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task.more »Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than the state-of-the-art methods in both noise-free and noisy network environments.« less
  3. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks.