Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 21, 2026
-
Free, publicly-accessible full text available April 24, 2026
-
Personalization has emerged as a critical research area in modern intelligent systems, focusing on mining users' behavioral history and adapting to their preferences for delivering tailored experiences. Despite the remarkable few-shot capabilities exhibited by black-box large language models (LLMs), the inherent opacity of their model parameters presents significant challenges in aligning the generated output with individual expectations. Existing solutions have primarily focused on prompt design to incorporate user-specific profiles and behaviors; however, such approaches often struggle to generalize effectively due to their inability to capture shared knowledge among all users. To address these challenges, we propose HYDRA, a model factorization framework that captures both user-specific behavior patterns from historical data and shared general knowledge among all users to deliver personalized generation. In order to capture user-specific behavior patterns, we first train a reranker to prioritize the most useful information from top-retrieved relevant historical records. By combining the prioritized history with the corresponding query, we train an adapter to align the output with individual user-specific preferences, eliminating the reliance on access to inherent model parameters of black-box LLMs. Both the reranker and the adapter can be decomposed into a base model with multiple user-specific heads, resembling a hydra. The base model maintains shared knowledge across users, while the multiple personal heads capture user-specific preferences. Experimental results demonstrate that \method outperforms existing state-of-the-art prompt-based methods by an average relative improvement of 9.01% across five diverse personalization tasks in the LaMP benchmark.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Aligning large language models (LLMs) with human objectives is crucial for real-world applications. However, fine-tuning LLMs for alignment often suffers from unstable training and requires substantial computing resources. Test-time alignment techniques, such as prompting and guided decoding, do not modify the underlying model, and their performance remains dependent on the original model's capabilities. To address these challenges, we propose aligning LLMs through representation editing. The core of our method is to view a pre-trained autoregressive LLM as a discrete-time stochastic dynamical system. To achieve alignment for specific objectives, we introduce external control signals into the state space of this language dynamical system. We train a value function directly on the hidden states according to the Bellman equation, enabling gradient-based optimization to obtain the optimal control signals at test time. Our experiments demonstrate that our method outperforms existing test-time alignment techniques while requiring significantly fewer resources compared to fine-tuning methods. Our code is available at https://github.com/Lingkai-Kong/RE-Control.more » « lessFree, publicly-accessible full text available December 9, 2025
An official website of the United States government

Full Text Available