skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ziebart, Brian D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data. Building on distributionally robust optimization and a regression approach, we propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution. The worst-case risk accounts for the effect of outliers. The proposed approach applies for general categorical random variables without assuming faithfulness, an ordinal relationship or a specific form of conditional distribution. We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach. Under mild assumptions, we derive non-asymptotic guarantees for successful structure learning with logarithmic sample complexities for bounded-degree graphs. Numerical study on synthetic and real datasets validates the effectiveness of our method. 
    more » « less
  2. The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness measure(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead recast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions. 
    more » « less
  3. While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods. 
    more » « less
  4. Structured prediction of tree-shaped objects is heavily studied under the name of syntactic dependency parsing. Current practice based on maximum likelihood or margin is either agnostic to or inconsistent with the evaluation loss. Risk minimization alleviates the discrepancy between training and test objectives but typically induces a non-convex problem. These approaches adopt explicit regularization to combat overfitting without probabilistic interpretation. We propose a momentbased distributionally robust optimization approach for tree structured prediction, where the worst-case expected loss over a set of distributions within bounded moment divergence from the empirical distribution is minimized. We develop efficient algorithms for arborescences and other variants of trees. We derive Fisher consistency, convergence rates and generalization bounds for our proposed method. We evaluate its empirical effectiveness on dependency parsing benchmarks. 
    more » « less
  5. Making predictions that are fair with regard to protected attributes (race, gender, age, etc.) has become an important requirement for classification algorithms. Existing techniques derive a fair model from sampled labeled data relying on the assumption that training and testing data are identically and independently drawn (iid) from the same distribution. In practice, distribution shift can and does occur between training and testing datasets as the characteristics of individuals interacting with the machine learning system change. We investigate fairness under covariate shift, a relaxation of the iid assumption in which the inputs or covariates change while the conditional label distribution remains the same. We seek fair decisions under these assumptions on target data with unknown labels. We propose an approach that obtains the predictor that is robust to the worst-case testing performance while satisfying target fairness requirements and matching statistical properties of the source data. We demonstrate the benefits of our approach on benchmark prediction tasks. 
    more » « less
  6. null (Ed.)
    Regular physical activity is associated with a reduced risk of chronic diseases such as type 2 diabetes and improved mental well-being. Yet, more than half of the US population is insufficiently active. Health coaching has been successful in promoting healthy behaviors. In this paper, we present our work towards assisting health coaches by extracting the physical activity goal the user and coach negotiate via text messages. We show that information captured by dialogue acts can help to improve the goal extraction results. We employ both traditional and transformer-based machine learning models for dialogue acts prediction and find them statistically indistinguishable in performance on our health coaching dataset. Moreover, we discuss the feedback provided by the health coaches when evaluating the correctness of the extracted goal summaries. This work is a step towards building a virtual assistant health coach to promote a healthy lifestyle. 
    more » « less
  7. Peters, Jonas; Sontag, David (Ed.)
    Structured prediction of objects in spaces that are inherently difficult to search or compactly characterize is a particularly challenging task. For example, though bipartite matchings in two dimensions can be tractably optimized and learned, the higher-dimensional generalization—3D matchings—are NP-hard to optimally obtain and the set of potential solutions cannot be compactly characterized. Though approximation is therefore necessary, prevalent structured prediction methods inherit the weaknesses they possess in the two-dimensional setting either suffering from inconsistency or intractability—even when the approximations are sufficient. In this paper, we explore extending an adversarial approach to learning bipartite matchings that avoids these weaknesses to the three dimensional setting. We assess the benefits compared to margin-based methods on a three-frame tracking problem. 
    more » « less
  8. More accurately inferring human intentions/goals can help robots complete collaborative human-robot tasks more safely and efficiently. Bayesian reasoning has become a popular approach for predicting the intention or goal of a partial sequence of actions/controls using a trajectory likelihood model. However, the mismatch between the training objective for these models (maximizing trajectory likelihood) and the application objective (maximizing intention likelihood) can be detrimental. In this paper, we seek to improve the goal prediction of maximum entropy inverse reinforcement learning (MaxEnt IRL) models by training to maximize goal likelihood. We demonstrate the benefits of our method on pointing task goal prediction with multiple possible goals and predicting goal based activities in the Cornell Activity Dataset (CAD-120). 
    more » « less
  9. Active learning methods, like uncertainty sampling, combined with probabilistic prediction techniques have achieved success in various problems like image classification and text classification. For more complex multivariate prediction tasks, the relationships between labels play an important role in designing structured classifiers with better performance. However, computational time complexity limits prevalent probabilistic methods from effectively supporting active learning. Specifically, while non-probabilistic methods based on structured support vector ma-chines can be tractably applied to predicting cuts and bipartite matchings, conditional random fields are intractable for these structures. We propose an adversarial approach for active learning with structured prediction domains that is tractable for cuts and matching. We evaluate this approach algorithmically in two important structured prediction problems: multi-label classification and object tracking in videos. We demonstrate better accuracy and computational efficiency for our proposed method. 
    more » « less