The water vapor transport associated with latent heat flux (LE) in the planetary boundary layer (PBL) is critical for the atmospheric hydrological cycle, radiation balance, and cloud formation. The spatiotemporal variability of LE and water vapor mixing ratio (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract r v ) are poorly understood due to the scale‐dependent and nonlinear atmospheric transport responses to land surface heterogeneity. Here, airborne in situ measurements with the wavelet technique are utilized to investigate scale‐dependent relationships among LE, vertical velocity (w ) variance (), andr v variance () over a heterogeneous surface during the Chequamegon Heterogeneous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign. Our findings reveal distinct scale distributions of LE, , and at 100 m height, with a majority scale range of 120 m–4 km in LE, 32 m–2 km in , and 200 m–8 km in . The scales are classified into three scale ranges, the turbulent scale (8–200 m), large‐eddy scale (200 m–2 km), and mesoscale (2–8 km) to evaluate scale‐resolved LE contributed by and . The large‐eddy scale in PBL contributes over 70% of the monthly mean total LE with equal parts (50%) of contributions from and . The monthly temporal variations mainly come from the first two major contributing classified scales in LE, , and . These results confirm the dominant role of the large‐eddy scale in the PBL in the vertical moisture transport from the surface to the PBL, while the mesoscale is shown to contribute an additional ∼20%. This analysis complements published scale‐dependent LE variations, which lack detailed scale‐dependent vertical velocity and moisture information.Free, publicly-accessible full text available February 16, 2025 -
Abstract This case study analyzes a tornadic supercell observed in northeast Louisiana as part of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) on 6–7 April 2018. One mobile research radar (SR1-P), one WSR-88D equivalent (KULM), and two airborne radars (TAFT and TFOR) have sampled the storm at close proximity for ∼70 min through its mature phase, tornadogenesis at 2340 UTC, and dissipation and subsequent ingestion into a developing MCS segment. The 4D wind field and reflectivity from up to four Doppler analyses, combined with 4D diabatic Lagrangian analysis (DLA) retrievals, has enabled kinematic and thermodynamic analysis of storm-scale boundaries leading up to, during, and after the dissipation of the NWS-surveyed EF0 tornado. The kinematic and thermodynamic analyses reveal a transient current of low-level streamwise vorticity leading into the low-level supercell updraft, appearing similar to the streamwise vorticity current (SVC) that has been identified in supercell simulations and previously observed only kinematically. Vorticity dynamical calculations demonstrate that both baroclinity and horizontal stretching play significant roles in the generation and amplification of streamwise vorticity associated with this SVC. While the SVC does not directly feed streamwise vorticity to the tornado–cyclone, its development coincides with tornadogenesis and an intensification of the supercell’s main low-level updraft, although a causal relationship is unclear. Although the mesoscale environment is not high-shear/low-CAPE (HSLC), the updraft of the analyzed supercell shares some similarities to past observations and simulations of HSLC storms in the Southeast United States, most notably a pulse-like updraft that is maximized in the low- to midlevels of the storm.
Significance Statement The purpose of this study is to analyze the airflow and thermodynamics of a highly observed tornado-producing supercell. While computer simulations can provide us with highly detailed looks at the complicated evolution of supercells, it is rare, due to the difficulty of data collection, to collect enough data to perform a highly detailed analysis on a particular supercell, especially in the Southeast United States. We identified a “current” of vorticity—rotating wind—that develops at the intersection of the supercell’s rain-cooled outflow and warm inflow, similar to previous simulations. This vorticity current develops and feeds the storm’s updraft as its tornado develops and the storm intensifies, although it does not directly enter the tornado.
-
Abstract This study uses a new, unique dataset created by combining multi-Doppler radar wind and reflectivity analysis, diabatic Lagrangian analysis (DLA) retrievals of temperature and water substance, and a complex hail trajectory model to create millions of numerically simulated hail trajectories in the Kingfisher, Oklahoma, supercell on 29 May 2012. The DLA output variables are used to obtain a realistic, 4D depiction of the storm’s thermal and hydrometeor structure as required input to the detailed hail growth trajectory model. Hail embryos are initialized in the hail growth module every 3 min of the radar analysis period (2251–0000 UTC) to produce over 2.7 million hail trajectories. A spatial integration technique considering all trajectories is used to identify locations within the supercell where melted particles and subsevere and severe hailstones reside in their lowest and highest concentrations. It is found that hailstones are more likely to reside for longer periods closer to the downshear updraft within the midlevel mesocyclone in a region of decelerated midlevel mesocyclonic horizontal flow, termed the downshear deceleration zone (DDZ). Additionally, clusters of trajectories are analyzed using a trajectory clustering method. Trajectory clusters show there are many trajectory pathways that result in hailstones ≥ 4.5 cm, including trajectories that begin upshear of the updraft away from ideal growth conditions and trajectories that grow within the DDZ. There are also trajectory clusters with similar shapes that experience widely different environmental and hailstone characteristics along the trajectory.
Significance Statement The purpose of this study is to understand how hail grew in a thunderstorm that was observed by numerous instruments. The observations were input into a hail trajectory model to simulate hail growth. We found a part of the storm near the updraft where hailstones could remain aloft longer and therefore grow larger. Most modeled severe hailstones were found in the storm in this region. However, we also found that there are many different pathways hailstones can take to become large, although there are still some common characteristics among the pathways.
-
Abstract On 28 May 2019, a tornadic supercell, observed as part of Targeted Observation by UAS and Radars of Supercells (TORUS) produced an EF-2 tornado near Tipton, Kansas. The supercell was observed to interact with multiple preexisting airmass boundaries. These boundaries and attendant air masses were examined using unoccupied aircraft system (UAS), mobile mesonets, radiosondes, and dual-Doppler analyses derived from TORUS mobile radars. The cool-side air mass of one of these boundaries was found to have higher equivalent potential temperature and backed winds relative to the warm-side air mass; features associated with mesoscale air masses with high theta-e (MAHTEs). It is hypothesized that these characteristics may have facilitated tornadogenesis. The two additional boundaries were produced by a nearby supercell and appeared to weaken the tornadic supercell. This work represents the first time that UAS have been used to examine the impact of preexisting airmass boundaries on a supercell, and it provides insights into the influence environmental heterogeneities can have on the evolution of a supercell.
-
Abstract The Targeted Observation by Radars and UAS of Supercells (TORUS) field project observed two supercells on 8 June 2019 in northwestern Kansas and far eastern Colorado. Although these storms occurred in close spatial and temporal proximity, their evolutions were markedly different. The first storm struggled to maintain itself and eventually dissipated. Meanwhile, the second supercell developed just after and slightly to the south of where the first storm dissipated, and then tracked over almost the same location before rapidly intensifying and going on to produce several tornadoes. The objective of this study is to determine why the first storm struggled to survive and failed to produce mesocyclonic tornadoes while the second storm thrived and was cyclically tornadic. Analysis relies on observations collected by the TORUS project—including unoccupied aircraft system (UAS) transects and profiles, mobile soundings, surface mobile mesonet transects, and dual-Doppler wind syntheses from the NOAA P-3 tail Doppler radars. Our results indicate that rapid changes in the low-level wind profile, the second supercell’s interaction with two mesoscale boundaries, an interaction with a rapidly intensifying new updraft just to its west, and the influence of a strong outflow surge likely account for much of the second supercell’s increased strength and tornado production. The rapid evolution of the low-level wind profile may have been most important in raising the probability of the second supercell becoming tornadic, with the new updraft and the outflow surge leading to a favorable storm-scale evolution that increased this probability further.
-
Abstract The microphysical characteristics of severe storms and deep convection are challenging but critical in situ observations. Adjustments to modeled microphysical parameters, radar‐based hydrometeor classifications, and lightning initiation research all depend on an accurate depiction of real‐world particle size distributions. To obtain these observations, a balloon‐borne particle imaging device known as the Particle Size, Image, and Velocity probe has been developed at the National Severe Storms Laboratory that is capable of measuring particle size distributions of different particle habits on vertical scales as small as 50 m. The Particle Size, Image, and Velocity observations show that there are rapid shifts in particle counts between successive analysis layers, documenting the small‐scale heterogeneity present inside deep convection. Furthermore, when examining functional fits using both a two and three moment scheme on the total distribution as well as individual particle habits, it is clear that a single prescribed parameter space is not adequate to describe the observations collected. When comparing radar reflectivity calculated from the distribution to independent observations from ground based mobile radars, the two sources agree to within 5 dBZ. This provides confidence to the particle density assumptions made here.
-
Abstract The 25–26 June 2015 nocturnal mesoscale convective system (MCS) from the Plains Elevated Convection at Night (PECAN) field project produced severe winds within an environment that might customarily be associated with elevated convection. This work incorporates both a full-physics real-world simulation and an idealized single-sounding simulation to explore the MCS’s evolution. Initially, the simulated convective systems were elevated, being maintained by wavelike disturbances and lacking surface cold pools. As the systems matured, surface outflows began to appear, particularly where heavy precipitation was occurring, with air in the surface cold pools originating from up to 4–5 km AGL. Via this progression, the MCSs exhibited a degree of self-organization (i.e., structures that are dependent upon an MCS’s particular history). The cold pools eventually became 1.5–3.5 km deep, by which point passive tracers revealed that the convection was at least partly surface based. Soon after becoming surface based, both simulations produced severe surface winds, the strongest of which were associated with embedded low-level mesovortices and their attendant outflow surges and bowing segments. The origin of the simulated mesovortices was likely the downward tilting of system-generated horizontal vorticity (from baroclinity, but also possibly friction) within the simulated MCSs’ outflow, as has been argued in a number of previous studies. Taken altogether, it appears that severe nocturnal MCSs may often resemble their cold pool-driven, surface-based afternoon counterparts.
-
Abstract This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.
-
During the Plains Elevated Convection at Night (PECAN) field campaign, 15 mesoscale convective system (MCS) environments were sampled by an array of instruments including radiosondes launched by three mobile sounding teams. Additional soundings were collected by fixed and mobile PECAN integrated sounding array (PISA) groups for a number of cases. Cluster analysis of observed vertical profiles established three primary preconvective categories: 1) those with an elevated maximum in equivalent potential temperature below a layer of potential instability; 2) those that maintain a daytime-like planetary boundary layer (PBL) and nearly potentially neutral low levels, sometimes even well after sunset despite the existence of a southerly low-level wind maximum; and 3) those that are potentially neutral at low levels, but have very weak or no southerly low-level winds. Profiles of equivalent potential temperature in elevated instability cases tend to evolve rapidly in time, while cases in the potentially neutral categories do not. Analysis of composite Rapid Refresh (RAP) environments indicate greater moisture content and moisture advection in an elevated layer in the elevated instability cases than in their potentially neutral counterparts. Postconvective soundings demonstrate significantly more variability, but cold pools were observed in nearly every PECAN MCS case. Following convection, perturbations range between −1.9 and −9.1 K over depths between 150 m and 4.35 km, but stronger, deeper stable layers lead to structures where the largest cold pool temperature perturbation is observed above the surface.